The damages to the structural elements, viz., inner race, outer race, rollers, cage, etc., of rolling contact bearings if not detected in time can cause tragic failures of the machineries supported by these bearings. The operating parameters like variations in the machinery speed, unbalance, operating load, etc., can cause a bearing to vibrate at higher energy levels and consequently will accelerate its wear. An attempt is made in this study, and a generalized model is developed using matrix method of dimensional analysis (MMDA) that predicted the response and correlated the dependent parameter, i.e., response with the significant independent parameters. Combined use of response surface methodology (RSM) is made to explore the dependence of various factors such as size of the defect, unbalance, speed, and their interactions on the vibration characteristics of the bearings. It is observed from the study that the model developed based on the MMDA has provided an efficient approach in recognizing the damaged bearing state, which can be easily implemented in the condition-based preventive maintenance strategies. Also, the effectiveness of MMDA as compared to the conventional Buckingham's pi theorem in the dimensional analysis (DA) practice, especially in the problems involving multiple variables, is shown in this study.

References

References
1.
Patil
,
M. S.
,
Mathew
,
J.
, and
Rajendrakumar
,
P. K.
,
2008
, “
Bearing Signature Analysis as a Medium for Fault Detection: A Review
,”
ASME J. Tribol.
,
130
(
1
), p.
014001
.
2.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to a Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.
3.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
4.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
The Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
5.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearings in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
6.
Dick
,
P.
,
Carl
,
H.
,
Nader
,
S.
,
Alireza
,
M. A.
, and
Sarabjeet
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations, Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearings With Raceway Defect
,”
J. Mech. Syst. Signal Process.
,
50–51
(
1
), pp.
139
160
.
7.
Ghafari
,
S. H.
,
Golnaraghi
,
F.
, and
Ismail
,
F.
,
2008
, “
Effect of Localized Faults on Chaotic Vibration of Rolling Element Bearings
,”
J. Nonlinear Dyn.
,
53
(
4
), pp.
287
301
.
8.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of High Speed Rolling Element Bearings Due to Localized Defects Using Response Surface Method
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
03100
.
9.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
10.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
11.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.
12.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
Fault Diagnosis of Rolling Element Bearing by Using Multinomial Logistic Regression and Wavelet Packet Transform
,”
J. Soft Comput.
,
18
(
1
), pp.
255
266
.
13.
Mingbo
,
Z.
,
Xiaohang
,
J.
,
Zhao
,
Z.
, and
Bing
,
L.
,
2014
, “
Fault Diagnosis of Rolling Element Bearings Via Discriminative Subspace Learning: Visualization and Classification
,”
J. Expert Syst. Appl.
,
41
(
7
), pp.
3391
3401
.
14.
Choon-Su
,
P.
,
Young-Chul
,
C.
, and
Yang-Hann
,
K.
,
2013
, “
Early Fault Detection in Automotive Ball Bearings Using the Minimum Variance Cepstrum
,”
J. Mech. Syst. Signal Process.
,
38
(
2
), pp.
534
548
.
15.
Marco
,
C.
,
Luca
,
B.
,
Cristian
,
S.
,
Cesare
,
F.
, and
Riccardo
,
R.
,
2012
, “
An Algorithm to Diagnose Ball Bearing Faults in Servomotors Running Arbitrary Motion Profiles
,”
J. Mech. Syst. Signal Process.
,
27
(
1
), pp.
667
682
.
16.
Gryllias
,
K. C.
, and
Antoniadis
,
I. A.
,
2012
, “
A Support Vector Machine Approach Based on Physical Model Training for Rolling Element Bearing Fault Detection in Industrial Environments
,”
J. Eng. Appl. Artif. Intell.
,
25
(
2
), pp.
326
344
.
17.
Bubathi
,
M.
,
Sanjith
,
M. A.
,
Krishnakumar
,
B.
, and
Satya Murty
,
S. A. V.
,
2012
, “
Roller Element Bearing Fault Diagnosis Using Singular Spectrum Analysis
,”
J. Mech. Syst. Signal Process.
,
35
(
1
), pp.
150
166
.
18.
Huaqing
,
W.
, and
Peng
,
C.
,
2011
, “
Intelligent Diagnosis Method for Rolling Element Bearing Faults Using Possibility Theory and Neural Network
,”
J. Comput. Ind. Eng.
,
60
(
4
), pp.
511
518
.
19.
Sugumaran
,
V.
, and
Ramachandran
,
K. I.
,
2011
, “
Fault Diagnosis of Roller Bearing Using Fuzzy Classifier and Histogram Features With Focus on Automatic Rule Learning
,”
J. Expert Syst. Appl.
,
38
(
5
), pp.
4901
4907
.
20.
Pan
,
Y.
,
Jin
,
C.
, and
Xinglin
,
L.
,
2010
, “
Bearing Performance Degradation Assessment Based on Lifting Wavelet Packet Decomposition and Fuzzy C-Means
,”
J. Mech. Syst. Signal Process.
,
24
(
2
), pp.
559
566
.
21.
Chun-Chieh
,
W.
,
Yuan
,
K.
,
Ping-Chen
,
S.
,
Yeon-Pun
,
C.
, and
Yu-Liang
,
C.
,
2010
, “
Applications of Fault Diagnosis in Rotating Machinery by Using Time Series Analysis With Neural Network
,”
J. Expert Syst. Appl.
,
37
(
2
), pp.
1696
1702
.
22.
Gibbings
,
J. C.
,
2011
,
Dimensional Analysis
,
Springer-Verlag
,
London
.
23.
Najm
,
O. S. A.
,
2012
, “
A New Method of Dimensional Analysis (Fluid Mechanics Applications)
,”
Jordan J. Civ. Eng.
,
6
(
3
), pp.
361
372
.
24.
Thomas
,
S.
,
2007
,
Applied Dimensional Analysis and Modeling
,
2nd ed.
,
Butterworth–Heinemann
,
Burlington, MA
.
25.
Raymond
,
H. M.
,
Douglas
,
C. M.
, and
Christine
,
M. A. C.
,
2009
,
Response Surface Methodology
,
3rd ed.
,
Wiley
,
India
.
26.
Qing-Ming
,
T.
,
2011
,
Dimensional Analysis With Case Studies in Mechanics
,
Springer-Verlag
,
Berlin
.
27.
John
,
O. R.
,
Sastry
,
G. P.
, and
David
,
A. D.
,
1998
,
Applied Regression Analysis—A Research Tool
,
2nd ed.
,
Springer-Verlag
,
New York
.
28.
Wowk
,
V.
,
1991
,
Machinery Vibrations: Measurement and Analysis
,
McGraw-Hill
,
New York
.
29.
Harris
,
T. A.
,
1996
,
Rolling Bearing Analysis
,
5th ed.
,
Wiley
,
New York
.
30.
Brandlein
,
J.
,
Eschmann
,
P.
,
Hasbargen
,
L.
, and
Weigand
,
K.
,
1999
,
Ball and Roller Bearings—Theory, Design and Application
,
3rd ed.
,
Wiley
,
London
.
31.
Thomas
,
P. R.
,
2007
,
Modern Experimental Design
,
Wiley
,
India
.
You do not currently have access to this content.