Steady-state mixed hydrodynamic lubrication of rigid journal bearing is investigated by using a finite difference form of the Patir–Cheng average Reynolds equation under the Reynolds boundary condition. Two sets of discretization meshes, i.e., the rectangular and nonorthogonal herringbone meshes, are considered. A virtual-mesh approach is suggested to resolve the problem due to the singularities of pressure derivatives at the turning point of the herringbone mesh. The effectiveness of the new approach is examined by comparing the predicted load with that found in the literature for a smooth-surface case solved in the conventional rectangular mesh. The effects of the skewness angles of symmetric and asymmetric herringbone meshes on the predicted parameters, such as load, friction coefficient, attitude angle, and maximum pressure, are investigated for smooth, rough, and herringbone-grooved bearing surfaces. It is found that the new approach helps to improve the computational accuracy significantly, as demonstrated by comparing the results with and without the treatment of the pressure derivative discontinuity although the latter costs slightly less computational time.

References

References
1.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
2.
Elrod
,
H. G.
, and
Adams
,
M. L.
,
1974
, “
A Computer Program for Cavitation and Starvation Problems
,”
Cavitation and Related Phenomena in Lubrication
,
Mechanical Engineering Publication
,
New York
, pp.
37
41
.
3.
McCallion
,
H.
,
Yousif
,
F.
, and
Lloyd
,
T.
,
1970
, “
The Analysis of Thermal Effects in a Full Journal Bearing
,”
ASME J. Lub. Tech.
,
92
(
4
), pp.
578
587
.
4.
Dmochowski
,
W.
,
Dadouche
,
A.
, and
Fillon
,
M.
,
2013
, “
Finite Difference Method for Film Fluid Bearings
,”
Encyclopedia of Tribology
, Vol.
2
,
Q. J.
Wang
and
Y.-W.
Chung
, eds.,
Springer
,
New York
, pp.
1137
1143
.
5.
Whipple
,
R. T. P.
,
1949
, “
Herringbone Pattern Thrust Bearing
,” Paper No. AERE T/M 29.
6.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone Grooved Gas Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
568
578
.
7.
Hirs
,
G. S.
,
1965
, “
The Load Capacity and Stability Characteristic of Hydrodynamic Grooved Journal Bearings
,”
ASLE Trans.
,
8
(
3
), pp.
296
305
.
8.
Kang
,
K.
,
Rhim
,
Y.
, and
Sung
,
K.
,
1996
, “
A Study of the Oil-Lubricated Herringbone-Grooved Journal Bearing—Part 1: Numerical Analysis
,”
ASME J. Tribol.
,
118
(
4
), pp.
906
911
.
9.
Zirkelback
,
N.
, and
San Andres
,
L.
,
1998
, “
Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study
,”
ASME J. Tribol.
,
120
(
2
), pp.
234
240
.
10.
Jang
,
G. H.
, and
Chang
,
D. I.
,
1999
, “
Analysis of a Hydrodynamic Herringbone Grooved Journal Bearing Considering Cavitation
,”
ASME J. Tribol.
,
122
(
1
), pp.
103
109
.
11.
Wu
,
J. K.
,
Li
,
A. F.
,
Lee
,
T. S.
,
Shu
,
C.
, and
Wan
,
J. M.
,
2004
, “
Operator-Splitting Method for the Analysis of Cavitation in Liquid-Lubricated Herringbone Grooved Journal Bearings
,”
Int. J. Numer. Methods Fluids
,
44
(
7
), pp.
765
775
.
12.
Chao
,
P. C. P.
, and
Huang
,
J. S.
,
2005
, “
Calculating Rotor Dynamic Coefficients of a Ferrofluid-Lubricated and Herringbone-Grooved Journal Bearing Via Finite Difference Analysis
,”
Tribol. Lett.
,
19
(
2
), pp.
99
109
.
13.
Liu
,
J.
, and
Yoshihiro
,
M.
,
2010
, “
Analysis of Oil-Lubricated Herringbone Grooved Journal Bearing With Trapezoidal Cross-Section, Using a Spectral Finite Difference Method
,”
J. Hydrodyn., Ser. B
,
22
(
5
), pp.
408
412
.
14.
Lee
,
T. S.
,
Liu
,
Y. G.
, and
Winoto
,
S. H.
,
2004
, “
Analysis of Liquid-Lubricated Herringbone Grooved Journal Bearings
,”
Int. J. Numer. Methods Heat Fluid Flow
,
14
(
3
), pp.
341
365
.
15.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
Grid Transformation and Adaption Techniques Applied in the Analysis of Cavitated Journal Bearings
,”
ASME J. Tribol.
,
112
(
1
), pp.
52
59
.
16.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
,
112
(
1
), pp.
44
51
.
17.
Patir
,
N.
, and
Chen
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
18.
Lee
,
S. C.
, and
Ren
,
N.
,
1996
, “
Behavior of Elastic-Plastic Rough Surface Contacts as Affected by Surface Topography, Load, and Material Hardness
,”
Tribol. Trans.
,
39
(
1
), pp.
67
74
.
19.
Wang
,
Q.
,
Shi
,
F.
, and
Lee
,
S. C.
,
1997
, “
A Mixed-Lubrication Study of Journal Bearing Conformal Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
456
461
.
20.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
21.
Christopherson
,
D. G.
,
1941
, “
A New Mathematical Method for the Solution of Film Lubrication Problem
,”
Proc. Inst. Mech. Eng.
,
146
(
1
), pp.
126
135
.
You do not currently have access to this content.