The three-dimensional (3D) transient computational fluid dynamic (CFD) method was proposed to predict rotordynamic coefficients for annular gas seals. This transient CFD method uses unsteady Reynolds-Averaged Navier–Stokes (RANS) solution technique and mesh deformation theory, which requires a rotor whirling model as the rotor excitation signal to solve the transient leakage flow field in seal and obtain the transient fluid response forces on the rotor surface. A fully partitioned pocket damper seal (FPDS) was taken as the test object to validate the present numerical method. Comparisons were made between experimental data and rotordynamic coefficient predictions using the three variations of the single-frequency and multiple-frequency rotor whirling models: (1) one-dimensional whirling model, (2) circular orbit whirling model, and (3) elliptical orbit whirling model. The numerical results show that the rotordynamic coefficients predicted by the present CFD method and six different rotor whirling models all agree well with the experiment data, and nearly coincide for all rotor whirling models. The proposed transient CFD method can be used to perform a reasonably accurate prediction of the frequency-dependent rotordynamic coefficients for annular gas seals based on any one of the present six rotor whirling models, as long as ensuring the combination of these whirling model parameters captures the small perturbation theory. The rotor whirling parameters such as whirling orbit, amplitude, and frequency number are important in predicting rotor whirling motion and fluid response forces, but have almost no effect on the computed rotordynamic coefficients. The benefit of the multiple-frequency rotor whirling models is the ability to calculate accurate rotordynamic coefficients of annular gas seals in a wide frequency range with a simulation time on the order of one-tenth the cost of the single-frequency whirling models.

References

References
1.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, pp.
339
347
.
2.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.
3.
Muszynska
,
A.
,
2005
,
Rotordynamics
,
CRC Press
,
Boca Raton
, pp.
214
222
.
4.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Seals and the Rotordynamics of Compressors and Turbines
,”
26th Turbomachinery Symposium, Houston, TX
, Sept. 14–18, pp.
201
220
.
5.
Vance
,
J. M.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
, pp.
271
278
.
6.
Childs
,
D.
, and
Vance
,
J.
,
1994
, “
Annular Seals as Tools to Control Rotordynamic Response of Future Gas Turbine Engines
,”
AIAA
Paper No. 94-2804.
7.
Armstrong
,
J.
, and
Perricone
,
F.
,
1996
, “
Turbine Instabilities Solution Honeycomb Seals
,”
25th Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M University
, College Station, TX, Sept. 17–19, pp.
47
56
.
8.
Yu
,
Z.
, and
Childs
,
D.
,
1998
, “
A Comparison of Experimental Rotordynamic Coefficients and Leakage Characteristics Between Hole-Pattern Gas Damper Seals and a Honeycomb Seal
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
778
783
.
9.
Vance
,
J.
, and
Schultz
,
R.
,
1993
, “
A New Damper Seal for Turbomachinery
,”
14th Biennial ASME Conference on Vibration and Noise
,
Albuquerque, NM
, Sept. 19–22, pp.
139
148
.
10.
Kurohashi
,
M.
,
Inoue
,
Y.
,
Abe
,
T.
, and
Fujikawa
,
T.
,
1980
, “
Spring and Damping Coefficients of the Labyrinth Seals
,”
2nd International Conference on Vibrations in Rotating Machinery
,
Cambridge, UK
, pp.
215
222
.
11.
Iwatsubo
,
T.
,
1980
, “
Evaluation of Instability of Forces of Labyrinth Seals in Turbines or Compressors
,”
Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery
, Texas A&M University, NASA Conference Publication No. 2133, pp.
139
167
.
12.
Childs
,
D.
, and
Scharrer
,
J.
,
1986
, “
Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.
13.
Wyssmann
,
H.
,
Pham
,
T.
, and
Jenny
,
R.
,
1984
, “
Prediction of Stiffness and Damping Coefficients for Centrifugal Compressor Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
920
926
.
14.
Scharrer
,
J.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficient of Labyrinth Gas Seals: Part I—A Two Control Volume Model
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
270
280
.
15.
Nelson
,
C. C.
,
1985
, “
Rotordynamic Coefficients for Compressible Flow in Tapered Annular Seals
,”
ASME J. Tribol.
,
107
(
3
), pp.
318
325
.
16.
Kleynhans
,
G. F.
,
1996
, “
A Two-Control-Volume Bulk-Flow Rotordynamic Analysis for Smooth-Rotor/Honeycomb-Stator Gas Annular Seals
,” Ph.D. thesis, Texas A&M University, College Station, TX.
17.
D'Souza
,
R.
, and
Childs
,
D.
,
2001
, “
A Comparison of Rotordynamic-Coefficient Predictions of Annular Honeycomb Gas Seals Using Different Friction-Factor Models
,”
ASME J. Tribol.
,
124
(
3
), pp.
524
529
.
18.
Shin
,
Y. S.
,
2005
, “
Modifications to a Two-Control-Volume, Frequency Dependent, Transfer-Function Analysis of Hole-Pattern Gas Annular Seals
,” M.S. thesis, Mechanical Engineering Department, Texas A&M University, College Station, TX.
19.
Childs
,
D. W.
,
Shin
,
Y. S.
, and
Seifert
,
B.
,
2008
, “
A Design to Improve the Effective Damping Characteristics of Hole-Pattern-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012505
.
20.
Alford
,
J. S.
,
1965
, “
Protecting Turbomachinery From Self Excited Rotor Whirl
,”
ASME J. Eng. Gas Turbine Power
,
87
(
4
), pp.
333
344
.
21.
Ertas
,
B.
,
2005
, “
Rotordynamic Force Coefficients of Pocket Damper Seals
,” Ph.D. dissertation, Mechanical Engineering, Texas A&M University, College Station, TX.
22.
Gamal
,
A. M.
,
2007
, “
Leakage and Rotordynamic Effects of Pocket Damper Seals and See-Through Labyrinth Seals
,” Ph.D. dissertation, Mechanical Engineering Department, Texas A&M University, College Station, TX.
23.
Dietzen
,
F.
, and
Nordmann
,
R.
,
1987
, “
Finite Difference Analysis for the Rotordynamic Coefficients of Turbulent Seals in Turbopumps
,”
Symposium on Thin Fluid Films
, Vol.
48
, pp.
31
42
.
24.
Dietzen
,
F.
, and
Nordmann
,
R.
,
1987
, “
Calculating Rotordynamic Coefficients by Finite Difference Techniques
,”
ASME J. Tribol.
,
109
(
3
), pp.
388
394
.
25.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.
26.
Pugachev
,
A. O.
, and
Degen
,
H.
,
2012
, “
CFD-Predicted Rotordynamic Coefficients for a 20-Teeth-on-Stator Labyrinth Seal at High Supply Pressure Conditions
,”
ASME
Paper No. GT2012-68381.
27.
Rao
,
J. S.
, and
Saravanokumar
,
M.
,
2006
, “
Numerical Simulation of Seal Flow and Determination of Stiffness and Damping Coefficient
,”
7th IFToMM-Conference on Rotor Dynamics
,
Vienna, Austria
, Sept. 25–28, pp.
25
28
.
28.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.
29.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.
30.
Nielsen
,
K. K.
,
Janck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME J. Eng. Gas Turbine Power
,
134
(
12
), p.
122505
.
31.
Sreedharan
,
S. S.
, and
Vannini
,
G.
,
2014
, “
CFD Assessment of Rotordynamic Coefficients in Labyrinth Sealss
,”
ASME
Paper No. GT2014-26999.
32.
Li
,
J.
,
Li
,
Z.
, and
Feng
,
Z.
,
2012
, “
Investigations on the Rotordynamic Coefficients of Pocket Damper Seals Using the Multifrequency, One-Dimensional, Whirling Orbit Model and RANS Solutions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102510
.
33.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.
34.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
A Generalized Prediction Method for Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092506
.
35.
Patrick
,
J. M.
,
Alexandrina
,
U.
,
Houston
,
G. W.
, and
Paul
,
E. A.
,
2012
, “
A Computational Fluid Dynamics/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Tribol.
,
134
(
2
), p.
022202
.
36.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Investigations on Rotordynamic Characteristic of Hole-Pattern Seals With Two Different Hole-Diameters
,”
ASME J. Turbomach.
,
137
(
7
), p.
071011
.
37.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2014
, “
Numerical Investigations on the Leakage and Rotordynamic Characteristics of Pocket Damper Seals—Part I: Effects of Pressure Ratio, Rotational Speed, and Inlet Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032503
.
38.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2014
, “
Numerical Investigations on the Leakage and Rotordynamic Characteristics of Pocket Damper Seals—Part II: Effects of Partition Wall Type, Partition Wall Number, and Cavity Depth
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032504
.
39.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis
,
Wiley
,
New York
, p.
292
.
40.
Rouvas
,
C.
, and
Childs
,
D.
,
1993
, “
A Parameter Identification Method for the Rotordynamic Coefficients of a High Reynolds Number Hydrostatic Bearing
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
264
270
.
41.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbine Power
,
134
(
4
), p.
042503
.
42.
ANSYS, Inc.,
2010
,
ANSYS CFX-Solver Theory Guide. Release 11.0
, ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.