For gears that are operated at slow speeds, wear is often the failure mode that limits gear lifetime. Gears running at slow speeds are often lubricated with grease. The composition of the grease has a significant effect not only on gear lifetime but also on lubrication costs. Therefore, the selection of a suitable grease for a given gear application requires a good knowledge of its expected performance in regard to wear. In order to better understand the wear behavior of gears lubricated with grease, an understanding of the influence that different grease components, e.g., base oil type and viscosity, thickener type, additive type, and solid lubricants, have on gear wear behavior is important. In this paper, systematic investigations on the influence of different grease components on the wear behavior of slow running, case carburized gears were conducted using the FZG back-to-back gear test rig. The emphasis of the experimental work presented herein lies on the effect that the base oil viscosity and type, additive type, type of soap thickener, as well as the type and concentration of solid lubricants have on the gear wear behavior at low pitch line velocities. The investigations showed that the base oil type and viscosity only have a slight effect on gear wear behavior under boundary lubrication conditions. However, the thickener type and especially the additive type as well as the solid lubricant type significantly affect the wear behavior of gears running at slow speeds and lubricated with grease.

References

References
1.
Plewe
,
H.-J.
,
1980
, “
Untersuchungen über den Abriebverschleiß von geschmierten, langsam laufenden Zahnrädern
,” Ph.D. thesis, Technische Universität München, München, Germany.
2.
Niemann
,
G.
, and
Winter
,
H.
,
2003
,
Maschinenelemente, Band 2: Getriebe allgemein, Zahnradgetriebe—Grundlagen, Stirnradgetriebe
,
Springer-Verlag
,
New York
, p.
136
.
3.
AGMA 912-A04
,
2004
,
Mechanisms of Gear Tooth Failures, American Gear Manufacturers Association
,
American National Standard
, Rosslyn, VA.
4.
Klüber Lubrication München KG
,
1996
,
Die Schmierung großer Zahnkranzantriebe
, Klüber Lubrication München KG,
München, Germany
.
5.
Höhn
,
B.-R.
,
Stahl
,
K.
, and
Michaelis
,
K.
,
2012
, “
Lubricant Influence on the Slow Speed Wear in Gears
,”
GOMABN
,
51
(
1
), pp.
5
28
.
6.
Krantz
,
T. L.
, and
Kahraman
,
A.
,
2004
, “
An Experimental Investigation of the Influence of the Lubricant Viscosity and Additives on Gear Wear
,”
Tribol. Trans.
,
47
(
1
), pp.
138
148
.
7.
Schultheiß
,
H.
,
Tobie
,
T.
,
Michaelis
,
K.
,
Höhn
,
B.-R.
, and
Stahl
,
K.
,
2014
, “
The Slow-Speed Wear Behavior of Case-Carburized Gears Lubricated With NLGI 00 Grease Under Boundary Lubrication Conditions
,”
Tribol. Trans.
,
57
(
3
), pp.
524
532
.
8.
Hochmann
,
M.
,
2007
,
Tragfähigkeit von Zahnradpaarungen bei Schmierung mit Getriebefetten
,
DGMK Forschungsbericht 591
,
Hamburg, Germany
.
9.
ISO 14635-3
,
2005
,
Gears–FZG Test Procedures—Part 3: FZG Test Method A/2.8/50 for Relative Scuffing Load-Carrying Capacity and Wear Characteristics of Semi-Fluid Gear Greases
,
International Organization for Standardization
, Geneva, Switzerland.
10.
Stemplinger
,
J.-P.
,
2012
,
Untersuchung der Tragfähigkeit von Zahnradpaarungen bei Schmierung mit Getriebefetten NLGI 0 und höchstviskosen Fluiden
,
DGMK Forschungsbericht 670
,
Hamburg, Germany
.
11.
Schultheiß
,
H.
,
2013
,
Untersuchung des Langsamlauf-Verschleißverhaltens einsatzgehärteter Zahnradpaarungen bei Schmierung mit Getriebefetten
,
DGMK-Forschungsbericht 725
,
Hamburg, Germany
.
12.
Bayerdörfer
,
I.
,
1997
,
Method to Assess the Wear Characteristics of Lubricants, FZG Test Method C/0.05/90:120/12
,
Gesellschaft für Erdöl, Erdgas und Kohle e.V.
,
Hamburg, Germany
.
13.
ISO 14635-1
,
2000
,
Gears–FZG Test Procedures—Part 1: FZG Test Method A/8.3/90 for Relative Scuffing Load-Carrying Capacity of Oils, Gears–FZG Test Procedures—Part 3: FZG Test Method A/2.8/50 for Relative Scuffing Load-Carrying Capacity and Wear Characteristics of Semi-Fluid Gear Greases
,
International Organization for Standardization
, Geneva, Switzerland.
14.
Emmert
,
S.
,
1993
,
Testverfahren zur Untersuchung des Schmierstoffeinflusses auf die Entstehung von Grauflecken bei Zahnrädern
,
FVA-Informationsblatt zu den Forschungsvorhaben
,
Frankfurt, Germany
.
15.
DIN 3962-1
,
1978
,
Toleranzen für Stirnradverzahnungen
,
Deutsches Institute für Normung e.V.
, Berlin.
16.
Höhn
,
B.-R.
,
Oster
,
P.
,
Schrade
,
U.
, and
Tobie
,
T.
,
2004
, “
Investigations on the Micropitting Load Carrying Capacity of Case Carburized Gears
,”
AGMA, Fall Technical Meeting
, Paper No. 04FTM5.
17.
Zornek
,
B.
,
2014
, “
Flankentragfähigkeit gerad-und schrägverzahnter Innenverzahnungen unter Berücksichtigung anwendungsspezifischer Einflussgrößen
,” Forschungsvereinigung Antriebstechnik e.V., FVA-Heft, Frankfurt, Germany.
18.
Cann
,
P. M.
, and
Spikes
,
H.
,
1992
, “
Film Thickness Measurements of Lubricating Greases Under Normally Starved Conditions
,”
NLGI Spokesman
,
56
(
2
), pp.
21
27
.
19.
Kaneta
,
M.
,
Ogata
,
T.
,
Takubo
,
Y.
, and
Naka
,
N.
,
2000
, “
Effects of a Thickener Structure on Grease Elastohydrodynamic Lubrication Films
,”
J. Eng. Tribol.
,
214
(
4
), pp.
327
336
.
20.
Hurley
,
S.
, and
Cann
,
P. M.
,
2000
, “
Infrared Spectroscopic Characterisation of Grease Lubricant Films on Metal Surfaces
,”
NLGI Spokesman
,
64
, pp.
13
21
.
21.
Laine
,
E.
,
Olver
,
A. V.
,
Lekstrom
,
M. F.
,
Shollock
,
B. A.
,
Beveridge
,
T. A.
, and
Hua
,
D. Y.
,
2009
, “
The Effect of a Friction Modifier Additive on Micropitting
,”
Tribol. Trans.
,
52
(
4
), pp.
526
533
.
22.
Stemplinger
,
J.-P.
,
Michaelis
,
K.
, and
Stahl
,
K.
,
2012
,
Charakterisierung der Schmierfetteinflüsse auf die Getriebeverluste
,
GETLUB Tribologie-und Schmierstoffkongress
,
Würzburg, Germany
, pp.
451
463
.
23.
Canter
,
N.
,
2012
, “
Grease Additives: Important Contributors Not to be Overlooked
,”
Tribol. Lubr. Technol.
,
68
(
12
), pp.
28
38
.
You do not currently have access to this content.