This paper is focused on a new modeling method of three-dimensional (3D) thermo-elasto-hydro-dynamic (TEHD) cylindrical pivot tilting-pad journal bearing (TPJB). Varying viscosity Reynolds equation and 3D energy equation are coupled via lubricant temperature and viscosity relationship. Three-dimensional finite element method (FEM) is adopted for the analysis of: (1) heat conduction in shaft and bearing pad, (2) thermal deformation of shaft and pad, (3) flexible bearing pad dynamic behavior, and (4) heat conduction, convection, and viscous shearing in thin lubricant film. For the computational efficiency, modal coordinate transformation is utilized in the flexible pad dynamic model, and pad dynamic behavior is represented only by means of modal coordinate. Fluid film thickness is calculated by a newly developed node based method, where pad arbitrary thermal and elastic deformation and journal thermal expansion are taken into account simultaneously. The main goal of this research is to provide more accurate numerical TPJB model than developed before so that the designers of rotating machinery are able to understand the bearing dynamic behavior and avoid unpredicted problem by selection of physical parameters.

References

References
1.
Lund
,
J.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp.
342
352
.
2.
Tieu
,
A.
,
1973
, “
Oil-Film Temperature Distribution in an Infinitely Wide Slider Bearing: An Application of the Finite-Element Method
,”
J. Mech. Eng. Sci.
,
15
(
4
), pp.
311
320
.
3.
Nilsson
,
L.
,
1978
, “
The Influence of Bearing Flexibility on the Dynamic Performance of Radial Oil Film Bearings
,”
Proceedings of the 5th Leeds-Lyon Symposium on Tribology
, Vol.
9
, pp.
331
319
.
4.
Lund
,
J. W.
, and
Pedersen
,
L. B.
,
1987
, “
The Influence of Pad Flexibility on the Dynamic Coefficients of a Tilting Pad Journal Bearing
,”
ASME J. Tribol.
,
109
(
1
), pp.
65
70
.
5.
Kirk
,
R.
, and
Reedy
,
S.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
2
), pp.
165
171
.
6.
Earles
,
L.
,
Armentrout
,
R.
, and
Palazzolo
,
A.
,
1990
, “
A Finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings—Part I: Single Pad Analysis
,”
ASME J. Tribol.
,
112
(
2
), pp.
169
176
.
7.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribol. Trans.
,
37
(
4
), pp.
771
783
.
8.
Kim
,
J.
,
Palazzolo
,
A.
, and
Gadangi
,
R.
,
1995
, “
Dynamic Characteristics of TEHD Tilt Pad Journal Bearing Simulation Including Multiple Mode Pad Flexibility Model
,”
ASME J. Vib. Acoust.
,
117
(
1
), pp.
123
135
.
9.
Gadangi
,
R.
, and
Palazzolo
,
A.
,
1995
, “
Transient Analysis of Tilt Pad Journal Bearings Including Effects of Pad Flexibility and Fluid Film Temperature
,”
ASME J. Tribol.
,
117
(
2
), pp.
302
307
.
10.
Desbordes
,
H.
,
Wai
,
C. C. H.
,
Fillon
,
M.
, and
FrêNe
,
J.
,
1995
, “
The Effects of Three-Dimensional Pad Deformations on Tilting-Pad Journal Bearings Under Dynamic Loading
,”
ASME J. Tribol.
,
117
(
3
), pp.
379
384
.
11.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-Orifice Active Tilting-Pad Journal Bearings—Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
.
12.
Wilkes
,
J. C.
, and
Childs
,
D. W.
,
2013
, “
Improving Tilting Pad Journal Bearing Predictions—Part I: Model Development and Impact of Rotor Excited Versus Bearing Excited Impedance Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012502
.
13.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
.
14.
Inman
,
D. J.
,
2010
,
Engineering Vibrations
,
Prentice-Hall
,
Upper Saddle River, NJ
.
15.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
16.
Nicholas
,
J. C.
, and
Wygant
,
K.
,
1995
, “
Tilting Pad Journal Bearing Pivot Design for High Load Applications
,”
Proceedings of the 24th Turbomachinery Symposium
, pp.
33
47
.
17.
Gomiciaga
,
R.
, and
Keogh
,
P.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
.
18.
Cook
,
R. D.
,
1994
,
Finite Element Modeling for Stress Analysis
,
Wiley
,
New York
.
19.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME J. Tribol.
,
136
(
3
), p.
031707
.
20.
Lund
,
J.
, and
Thomsen
,
K.
,
1978
, “
A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings
,”
Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization
,
ASME
,
New York
, pp.
1
28
.
21.
Gadangi
,
R. K.
,
1995
, “
Transient Rotordynamics With Flexible Shaft and Flexible Nonlinear Hydrodynamic Journal Bearings Including Thermal Effects
,” Ph.D. thesis, Texas A&M University, College Station, TX.
22.
Heinrich
,
J.
,
Huyakorn
,
P.
,
Zienkiewicz
,
O.
, and
Mitchell
,
A.
,
1977
, “
An ‘Upwind’ Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
.
You do not currently have access to this content.