The present study extends the scope of compressible lubrication theory (CLT) by considering a more complete formulation of compressible flow in a thin film. A one-dimensional (1D) approximation is obtained, which is common in basic studies of compressible flow. A dimensionless formulation of the thin film compressible flow equations (continuity, momentum, energy, and perfect gas) is derived. There are three dimensionless governing parameters, the Mach number M, the compressibility or bearing number Λ, and a heat transfer number H (a sort of inverse Péclet number). The classical theory assumes isothermal conditions (a consequence of a large heat transfer number) and implicitly assumes low Mach number conditions. It turns out that neither of these conditions are met in high-speed applications such as foil bearings. Results are calculated by varying M and H in a parametric fashion. We find that the influence of Mach number is small (at least up to M = 0.5) but the influence of heat transfer is large: the classical predicted results are in error by a factor of four or so. The improved theory predicts much greater load than the traditional. This means that high-speed air bearing design based on CLT would function satisfactorily, as born out by their successful application; however, such bearings would be significantly over-designed.

References

References
1.
Pritchard
,
P.
,
2011
,
Fox and McDonald's Introduction to Fluid Mechanics
,
8th ed.
,
Wiley
, New York.
2.
Sabersky
,
R.
,
Acosta
,
A.
,
Hauptmann
,
E.
, and
Gates
,
E.
,
2001
,
Fluid Flow: A First Course in Fluid Mechanics
,
4th ed.
,
Prentice Hall
, New York.
3.
Thompson
,
P.
,
1972
,
Compressible Fluid Dynamics
,
McGraw-Hill
, New York.
4.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347. 10.1115/97-GT-347
5.
Heshmat
,
H.
,
Walowit
,
J.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas Lubricated Compliant Thrust Bearings
,”
ASME J. Tribol.
,
105
(
4
), pp.
638
646
.10.1115/1.3254696
6.
Ng
,
C.
, and
Pan
,
C.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Fluids Eng.
,
87
(
3
), pp.
675
682
.10.1115/1.3650640
7.
Elrod
,
H.
, and
Ng
,
C.
,
1967
, “
A Theory for Turbulent Fluid Films and Its Application to Bearings
,”
ASME J. Tribol.
,
89
(
3
), pp.
346
362
.10.1115/1.3616989
8.
Constantinescu
,
V.
,
1970
, “
On the Influence of Inertia Forces in Turbulent and Laminar Self-Acting Films
,”
ASME J. Tribol.
,
92
(
3
), pp.
473
480
.10.1115/1.3451444
9.
Brunetière
,
N.
, and
Tournerie
,
B.
,
2007
, “
Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films
,”
ASME J. Tribol.
,
129
(
4
), pp.
876
886
.10.1115/1.2768089
10.
Eleshaky
,
M.
,
2009
, “
CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearings
,”
Tribol. Int.
,
42
(
7
), pp.
1108
1117
.10.1016/j.triboint.2009.03.011
11.
Garcia
,
M.
,
Bou-Saïd
,
B.
,
Rocchi
,
J.
, and
Grau
,
G.
,
2013
, “
Refrigerant Foil Bearing Behavior—A Thermo-Hydrodynamic Study (Application to Rigid Bearings)
,”
Tribol. Int.
,
65
, pp.
363
369
.10.1016/j.triboint.2012.12.006
12.
Bauman
,
S.
,
2005
, “
An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation
,”
NASA/TM
Paper No. 2005-2113568.NASA/TM.http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050160253.pdf
13.
Dykas
,
B.
,
Bruckner
,
R.
,
DellaCorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2009
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
.10.1115/1.2966418
14.
Park
,
D.-J.
,
Kim
,
C.-H.
,
Jang
,
G.-H.
, and
Lee
,
Y.-B.
,
2008
, “
Theoretical Considerations of Static and Dynamic Characteristics of Air Foil Thrust Bearing With Tilt and Slip Flow
,”
Tribol. Int.
,
41
(
4
), pp.
282
295
.10.1016/j.triboint.2007.08.001
15.
Pirozzoli
,
S.
, and
Colonius
,
T.
,
2013
, “
Generalized Characteristic Relaxation Boundary Conditions for Unsteady Compressible Flow Simulations
,”
J. Comput. Phys.
,
248
, pp.
109
129
.10.1016/j.jcp.2013.04.021
16.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
17.
Yu
,
L.
,
Qi
,
S.
, and
Geng
,
H.
,
2005
, “
A Generalized Solution of Elasto-Aerodynamic Lubrication for Aerodynamic Compliant Foil Bearings
,”
Sci. China, Ser. E: Eng. Mater. Sci.
,
48
(
4
), pp.
414
429
.10.1360/03ye0551
18.
Moraru
,
L.
, and
Keith
,
T.
,
2007
, “
Lobatto Point Quadrature for Thermal Lubrication Problems Involving Compressible Lubricants. EHL Applications
,”
ASME J. Tribol.
,
129
(
1
), pp.
194
198
.10.1115/1.2404965
19.
Fillon
,
M.
, and
Glavatskih
,
S.
,
2008
, “
PTFE-Faced Centre Pivot Thrust Pad Bearings: Factors Affecting TEHD Performance
,”
Tribol. Int.
,
41
(
12
), pp.
1219
1225
.10.1016/j.triboint.2008.03.011
20.
Boncompain
,
R.
,
Fillon
,
M.
, and
Frêene
,
J.
,
1986
, “
Analysis of Thermal Effects in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp. 219–224.10.1115/1.3261166
21.
Hannon
,
W.
,
Braun
,
M.
, and
Hariharan
,
S.
,
2004
, “
Generalized Universal Reynolds Equation for Variable Properties Fluid-Film Lubrication and Variable Geometry Self-Acting Bearings
,”
STLE Tribol. Trans.
,
47
(
1
), pp.
171
181
.10.1080/05698190490431803
22.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
8th ed.
,
Springer
, New York.10.1007/978-3-642-85829-1
23.
Incropera
,
F.
, and
De Witt
,
D.
,
1990
,
Introduction to Heat Transfer
,
2nd ed.
,
Wiley
, New York.
24.
Tichy
,
J.
, and
Bou-Saïd
,
B.
,
1991
, “
Hydrodynamic Lubrication and Bearing Behavior With Impulsive Loads
,”
STLE Tribol. Trans.
,
34
(
4
), pp.
505
512
.10.1080/10402009108982063
25.
Karamcheti
,
K.
,
1966
,
Principles of Ideal-Fluid Aerodynamics
,
Wiley
, New York.
You do not currently have access to this content.