The three-lobe bearings widely used in rotating machinery follow the design data evaluated using numerical methods for the solution of the Reynolds equation. This paper defines exact and approximate analytical solutions of the Reynolds equation for the case of three-lobe bearings with finite length. Dynamic characteristics are provided analytically with closed-form expressions for laminar regimes of operation, using an approximate analytical solution that proves to be reliable and of low cost of evaluation time. The results for eccentricity ratio, equilibrium locus, stiffness and damping coefficients are presented for a range of Sommerfeld number and different cases of load orientation and compared with theoretical and experimental data from the literature.

References

References
1.
Pinkus
,
O.
,
1956
, “
Analysis of Elliptical Bearings
,”
Trans. ASME
,
78
, pp.
965
973
.
2.
Pinkus
,
O.
,
1959
, “
Analysis and Characteristics of Three-Lobe Bearings
,”
Trans. ASME, J. Basic Eng.
,
81
, pp.
49
55
.
3.
Lund
,
J. W.
,
1965
, “
Rotor-Bearing Dynamics Design Technology, Part III: Design Handbook for Fluid-Film Type Bearings
,” Mechanical Technology, Technical Report No. AFAPL-TR-65-45.
4.
Lund
,
J. W.
,
1968
, “
Rotor-Bearing Dynamics Design Technology, Part VII: The Three-Lobe Bearing and Floating Ring Bearing
,” Mechanical Technology, Technical Report No. AFAPL-TR-65-45.
5.
Lund
,
J. W.
, and
Thomsen
,
K. K.
,
1978
, “
A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings
,”
Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization, The ASME Design Engineering Conference
, pp.
1
29
.
6.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1983
, “
An Approximate Solution Technique for Multi-Lobe Journal Bearings including Thermal Effects, With Comparison to Experiment
,”
ASME Trans.
,
26
(
4
), pp.
501
508
.
7.
Glienicke
,
J.
,
Han
,
D. C.
, and
Leonhard
,
M.
,
1980
, “
Practical Determination and Use of Bearing Dynamic Coefficients
,”
Trib. Int.
,
13
(
6
), pp.
297
309
.10.1016/0301-679X(80)90094-8
8.
Eierman
,
R. G.
,
1976
, “
Stability Analysis and Transient Motion of Axial Groove Multi-Lobe and Tilting-Pad Bearings
,” M. S., thesis,
University of Virginia
, Charlottesville, VA.
9.
Shang
,
L.
, and
Dien
,
L. K.
,
1989
, “
A Matrix Method for Computing the Stiffness and Damping Coefficients of Multi-Arc Journal Bearings
,”
Tribol. Trans.
,
32
(
3
), pp.
396
404
.10.1080/10402008908981905
10.
Someya
,
T.
,
1989
,
Journal Bearing Design Data Book
,
Springer
,
Berlin
.
11.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.10.1115/1.3251669
12.
Vaidyanathan
,
K.
, and
Keith
,
T. G.
,
1989
, “
Numerical Prediction of Cavitation in Noncircular Journal Bearings
,”
Tribol. Trans.
,
32
(
2
), pp.
215
221
.10.1080/10402008908981881
13.
Vijayaraghavan
,
D.
, and
Keith.
,
T. G.
,
1989
, “
Development and Evaluation of a Cavitation Algorithm
,”
Tribol. Trans.
,
32
(
2
), pp.
225
233
.10.1080/10402008908981882
14.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
An Efficient, Robust and Time Accurate Numerical Scheme Applied to Cavitation Algorithm
,”
ASME J. Tribol.
,
112
(
1
), pp.
44
51
.10.1115/1.2920229
15.
Swanson
,
E. E.
, and
Kirk
,
R. G.
,
1997
, “
Survey of Experimental Data for Fixed Geometry Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
119
(
4
), pp.
704
710
.10.1115/1.2833874
16.
Kostrzewsky
,
G. J.
,
Flack
,
R. D.
, and
Barett
,
L. E.
,
1998
, “
Comparison Between Measured and Predicted Performance of a Two-Axial Groove Journal Bearing
,”
Tribol. Trans.
,
39
, pp.
571
578
.10.1080/10402009608983568
17.
Kostrzewsky
,
G. J.
,
Taylor
,
D. V.
,
Flack
,
R. D.
, and
Barett
,
L. E.
,
1998
, “
Theoretical and Experimental Dynamic Characteristics of a Highly Preloaded Three-Lobe Journal Bearing
,”
Tribol. Trans.
,
41
(
3
), pp.
392
398
.10.1080/10402009808983764
18.
Rao
,
T. V. V. L. N.
, and
Sawicki
,
J. T.
,
2003
, “
Dynamic Coefficient Prediction in Multi-Lobe Journal Bearing Using a Mass Conservation Algorithm
,”
Tribol. Trans.
,
46
(
3
), pp.
414
420
.10.1080/10402000308982645
19.
Dargaiah
,
K.
,
Parthasarathy
,
K.
, and
Prabhu
,
B. S.
,
1993
, “
Finite Element Method for Computing Dynamic Coefficients of Multilobe Bearings
,”
Tribol. Trans.
,
36
(
1
), pp.
73
83
.10.1080/10402009308983135
20.
Malik
,
M.
,
Sinhasan
,
R.
, and
Chandra
,
M.
,
1981
, “
Design Data for Three-Lobe Bearings
,”
Tribol. Trans.
,
24
(
3
), pp.
345
353
.10.1080/05698198108983031
21.
Ng
,
C. W.
, and
Pan
,
C. H. T.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
675
688
.10.1115/1.3650640
22.
Sinhasan
,
R.
,
Malik
,
M.
, and
Chandra
,
M.
,
1980
, “
Analysis of Two-Lobe Porous Hydrodynamic Journal Bearings
,”
Wear
,
64
(
2
), pp.
343
357
.10.1016/0043-1648(80)90140-4
23.
Flack
,
R. D.
, and
Allaire
,
P. E.
,
1982
, “
An Experimental and Theoretical Examination of the Static Characteristics of Three-Lobe Bearings
,”
Tribol. Trans.
,
25
(
1
), pp.
88
94
.10.1080/05698198208983069
24.
Khatri
,
R.
, and
Childs
,
D.
,
2014
, “
An Experimental Investigation of the Dynamic Performance of a Vertical-Application Three-Lobe Bearing
,”
ASME
Paper No. GT2014-25483. 10.1115/GT2014-25483
25.
Khatri
,
R.
,
Childs
,
D.
, and
Jordan
,
L.
,
2015
, “
An Experimental Study of the Load Orientation Sensitivity of Three-Lobe Bearings
,”
ASME. J. Eng. Gas Turbines Power
,
137
(
4
), p.
042503
.10.1115/1.4028662
26.
Khatri
,
R.
, and
Childs
,
D.
,
2015
, “
An Experimental Investigation of the Dynamic Performance of a Vertical-Application Three-Lobe Bearing
,”
ASME. J. Eng. Gas Turbines Power
,
137
(
4
), p.
042504
.10.1115/1.4028672
27.
Pettinato
,
B.
, and
Flack
,
R. D.
,
2015
, “
Test Results for a Highly Preloaded Three-Lobe Journal Bearing-Effect of Load Orientation on Static and Dynamic Characteristics
,”
J. Soc. Tribol. Lubr. Eng.
,
57
(
9
), pp.
23
30
.
28.
Childs
,
D. W.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2011
, “
Tilting-Pad Bearings: Measured Frequency Characteristics of their Rotordynamic Coefficients
,”
Proceedings of the Fortieth Turbomachinery Symposium
,
Houston, TX
, pp.
33
45
.
29.
Wilkes
,
J.
,
2011
, “
Measured and Predicted Transfer Functions Between Rotor Motion and Pad Motion for a Rocker-Back Tilting-Pad Bearing in LOP Configuration
,”
ASME
Paper No. GT2011-46510. 10.1115/GT2011-46510
30.
Chasalevris
,
A.
, and
Sfyris
,
D.
,
2013
, “
Evaluation of the Finite Journal Bearing Characteristics Using the Exact Analytical Solution of the Reynolds Equation
,”
Tribol. Int.
,
57
, pp.
216
234
.10.1016/j.triboint.2012.08.011
31.
Sfyris
,
D.
, and
Chasalevris
,
A.
,
2012
, “
An Exact Analytical Solution of the Reynolds Equation for the Finite Journal Bearing
,”
Trib. Int.
,
55
, pp.
46
58
.10.1016/j.triboint.2012.05.013
32.
Vogelpohl
,
G.
,
1943
, “
Zur Integration der Reynoldsschen Gleichung für das Zapfenlager Endlicher Breite
,”
Ing. Arch.
,
14
(
3
), pp.
192
212
.10.1007/BF02085991
33.
Vogelpohl
,
G.
,
1956
,
Über die Tragfähigkeit von Gleitlagern und ihre Berechnung
,
Westdeutscher Verlag/Köln und Opladen
,
Germany
.
34.
Vogelpohl
,
G.
,
1937
,
Beiträge zur Kenntnis der Gleitlagerreibung
, Vol.
386
,
VDI-Forsch.-Heft
, Düsseldorf, pp.
3
5
.
35.
Michell
,
A.
,
1929
, “
Progress in Fluid Film Lubrication
,”
Trans. ASME
,
51
, pp.
153
163
.
36.
Duffing
,
G.
,
1931
,
Die Schmiermittelreibung bei Gleitflächen von Endlicher Breite, Handbucher Phys. U. Techn., Mechanik von Auerbach-Hort
,
Leipzig, Germany
, pp.
839
850
.
37.
Rao
,
T. V. V. L. N.
, and
Sawicki
,
J. T.
,
2002
, “
Linear Stability Analysis for a Hydrodynamic Journal Bearing Considering Cavitation Effects
,”
Tribol. Trans.
,
45
(
4
), pp.
450
456
.10.1080/10402000208982573
38.
Boyce
,
W.
, and
DiPrima
,
R.
,
1997
,
Elementary Differential Equations and Boundary Value Problems
,
Wiley
,
New York
.
39.
Conte
,
S. D.
, and
DeBoor
,
C.
,
1972
,
Elementary Numerical Analysis
,
McGraw-Hill
,
New York
.
40.
Courant
,
R.
, and
Hilbert
,
D.
,
1989
,
Methods of Mathematical Physics
, Vol.
2
,
Wiley-VCH
, Berlin.
41.
Polyanin
,
A.
, and
Zaitsev
,
V.
,
2003
,
Handbook of Exact Solutions for Ordinary Differential Equations
,
Chapman & Hall/CRC
,
Boca Raton
.
You do not currently have access to this content.