In this paper, the wear of nanostructured NiAl coating was studied both experimentally and numerically. First, the nanocrystalline NiAl intermetallic powder was synthesized by mechanical alloying (MA) of aluminum and Ni powders. The coatings were deposited onto the low carbon steel substrate using high velocity oxy-fuel (HVOF) technique. Nanoindentation test was conducted to find out the mechanical properties of the coating. The dry wear tests were then performed using a pin-on-block test rig under different operating conditions. Finally, finite element (FE) method was employed to model the wear characteristics of the prepared nanostructured material. A three-dimensional (3D) FE model was created and used to simulate the pin-on-block experiments. The results show that the volume losses predicted by the numerical analysis are in good agreement with the experimental data.

References

References
1.
Sidhu
,
T. S.
,
Prakash
,
S.
, and
Agarwal
,
R. D.
,
2006
, “
Performance of High-Velocity Oxy-Fuel Sprayed Coatings on an Fe-Based Superalloy in Na2SO4–60%V2O5 Environment at 900 °C. Part I: Characterization of the Coatings
,”
Mater. Eng. Perform.
,
15
(
1
), pp.
130
138
.10.1361/105994906X83411
2.
Herman
,
H.
,
Sampath
,
S.
, and
Mccune
,
R.
,
2000
, “
Thermal Spray: Current Status and Future Trends
,”
MRS Bull.
,
25
(
7
), pp.
17
25
.10.1557/mrs2000.119
3.
Liu
,
C. T.
,
Stiegler
,
J. O.
, and
Froes
,
F. H.
,
1990
,
Ordered Intermetallics: ASM Metals Handbook
,
10th ed.
,
ASM
, Materials Park, OH.
4.
Koch
,
C. C.
, and
Whittenberger
,
J. D.
,
1996
, “
Mechanical Milling/Alloying of Intermetallics
,”
Intermetallics
,
4
(
5
), pp.
339
355
.10.1016/0966-9795(96)00001-5
5.
Froes
,
F. H.
,
Suryanarayana
,
C.
,
Russel
,
K.
, and
Li
,
G. C.
,
1995
, “
Synthesis of Intermetallics by Mechanical Alloying
,”
Mater. Sci. Eng., A
,
192–193
(
Pt. 2
), pp.
612
623
.10.1016/0921-5093(94)03285-8
6.
Joardar
,
J. S.
,
Pabi
,
K.
, and
Murty
,
B. S.
,
2007
, “
Milling Criteria for the Synthesis of Nanocrystalline NiAl by Mechanical Alloying
,”
J. Alloys Compd.
,
429
(
1–2
), pp.
204
210
.10.1016/j.jallcom.2006.04.045
7.
Chen
,
T.
,
Hampikian
,
J. M.
, and
Thadhani
,
N. N.
,
1999
, “
Synthesis and Characterization of Mechanically Alloyed and Shock-Consolidated Nanocrystalline NiAl Intermetallic
,”
Acta Mater.
,
47
(
8
), pp.
2567
2579
.10.1016/S1359-6454(99)00059-2
8.
Murty
,
B. S.
,
Mohan Rao
,
M.
, and
Ranganathan
,
S.
,
1995
, “
Milling Maps and Amorphization During Mechanical Alloying
,”
Acta Metall. Mater.
,
43
(
6
), pp.
2443
2450
.10.1016/0956-7151(94)00402-1
9.
Enayati
,
M. H.
,
Karimzadeh
,
F.
, and
Anvari
,
S. Z.
,
2008
, “
Synthesis of Nanocrystalline NiAl by Mechanical Alloying
,”
J. Mater. Process. Technol.
,
200
(
1–3
), pp.
312
315
.10.1016/j.jmatprotec.2007.09.023
10.
Mashreghi
,
A.
, and
Moshksar
,
M. M.
,
2009
, “
Partial Martensitic Transformation of Nanocrystalline NiAl Intermetallic During Mechanical Alloying
,”
J. Alloys Compd.
,
482
(
1–2
), pp.
196
198
.10.1016/j.jallcom.2009.03.156
11.
Hearley
,
J. A.
,
Little
,
J. A.
, and
Sturgeon
,
A. J.
,
2000
, “
The Effect of Spray Parameters on the Properties of High Velocity Oxy-Fuel NiAl Intermetallic Coatings
,”
Surf. Coat. Technol.
,
123
(
2–3
), pp.
210
218
.10.1016/S0257-8972(99)00511-3
12.
Hearley
,
J. A.
,
Little
,
J. A.
, and
Sturgeon
,
A. J.
,
1999
, “
The Erosion Behaviour of NiAl Intermetallic Coatings Produced by High Velocity Oxy-Fuel Thermal Spraying
,”
Wear
,
233–235
, pp.
328
333
.10.1016/S0043-1648(99)00240-9
13.
Hu
,
W.
,
Li
,
M.
, and
Masahiro
,
F.
,
2008
, “
Preparation and Properties of HVOF NiAl Nanostructured Coatings
,”
Mater. Sci. Eng., A
,
478
(
1–2
), pp.
1
8
.10.1016/j.msea.2007.05.048
14.
Enayati
,
M. H.
,
Karimzadeh
,
F.
, and
Tavoosi
,
M.
,
2011
, “
Nanocrystalline NiAl Coating Prepared by HVOF Thermal Spraying
,”
J. Therm. Spray Technol.
,
20
(
3
), pp.
440
446
.10.1007/s11666-010-9588-7
15.
Enayati
,
M. H.
,
Karimzadeh
,
F.
, and
Jafari
,
M.
,
2014
, “
Microstructural and Wear Characteristics of HVOF-Sprayed Nanocrystalline NiAl Coating
,”
Wear
,
309
(
1–2
), pp.
192
199
.10.1016/j.wear.2013.10.015
16.
Rezai
,
A.
,
Paepagem
,
W. V.
, and
Baets
,
P. D.
,
2012
, “
Adaptive Finite Element Simulation of Wear Evolution in Radial Sliding Bearings
,”
Wear
,
296
(
1–2
), pp.
660
671
.10.1016/j.wear.2012.08.013
17.
Hegadekatte
,
V.
,
Huber
,
N.
, and
Kraft
,
O.
,
2006
, “
Modeling and Simulation of Wear in a Pin on Dics Tribometer
,”
Tribol. Lett.
,
24
(
1
), pp.
51
60
.10.1007/s11249-006-9144-2
18.
Hegadekatte
,
V.
,
Huber
,
N.
, and
Kraft
,
O.
,
2004
, “
Finite Element Based Simulation of Dry Sliding Wear
,”
Modelling Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
57
75
.10.1088/0965-0393/13/1/005
19.
Soderberg
,
A.
, and
Andersson
,
S.
,
2009
, “
Simulation of Wear and Contact Pressure Distribution at the Pad-to-Rotor Interface in a Disc Brake Using General Purpose Finite Element Analysis Software
,”
Wear
,
267
(
12
), pp.
2243
2251
.10.1016/j.wear.2009.09.004
20.
Martinez
,
F. J.
,
Canales
,
M.
,
Lzquierdo
,
S.
,
Jimenez
,
M. A.
, and
Martinez
,
M. A.
,
2012
, “
Finite Element Implementation and Validation of Wear Modeling in Sliding Polymer–Metal Contacts
,”
Wear
,
284–285
, pp.
52
64
.10.1016/j.wear.2012.02.003
21.
Bortoleto
,
E. M.
,
Rovani
,
A. C.
,
Seriacopi
,
V.
,
Zachariadis
,
D. C.
, and
Machado
,
I. F.
,
2013
, “
Experimental and Numerical Analysis of Dry Contact in the Pin on Disc Test
,”
Wear
,
301
(
1–2
), pp.
19
26
.10.1016/j.wear.2012.12.005
22.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Moduli Using Load and Displacement Sensing Indentation Experiments
,”
Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
23.
Toparli
,
M.
,
Sen
,
F.
,
Culha
,
O.
, and
Celik
,
E.
,
2007
, “
Thermal Stress Analysis of HVOF Sprayed WC–Co/NiAl Multilayer Coatings on Stainless Steel Substrate Using Finite Element Methods
,”
Mater. Process. Technol.
,
190
(
1–3
), pp.
26
32
.10.1016/j.jmatprotec.2007.03.115
You do not currently have access to this content.