In the design of cylindrical roller bearings (CRBs), a long life is one of the most essential criteria. However, the life of bearings depends on the multitude of factors that includes the fatigue, lubrication, and thermal characteristics in bearings. In the present work, three primary objectives namely, the dynamic capacity, the elastohydrodynamic lubrication (EHL) minimum film-thickness, and the maximum temperature have been optimized, sequentially. Some of these objectives may be contradicting to each other. The optimum bearing design has been attempted by first deriving a constrained nonlinear formulation and then optimizing it with an evolutionary algorithm. Constraint violations study has been performed to have assessment of the effectiveness of each of the constraints. A convergence study has been carried out to ensure the near global optimum point in the design. In terms of the basic dynamic capacity of the bearing, there is an excellent conformity among the optimized and customary bearings. A sensitivity study of various geometric design variables has been performed to see changes in objective functions and results show that geometric variables have hardly any undesirable influence.

References

References
1.
Asimow
,
M.
,
1962
,
Introduction to Engineering Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Shigley
,
J. E.
,
1986
,
Mechanical Engineering Design
,
McGraw-Hill Book Company
,
New York
.
3.
Seireg
,
A.
, and
Ezzat
,
H.
,
1969
, “
Optimum Design of Hydrodynamic Journal Bearings
,”
ASME J. Lubr. Technol.
,
91
(
3
), pp.
516
523
.10.1115/1.3554974
4.
Maday
,
C. J.
,
1970
, “
The Maximum Principle Approach to the Optimum One-Dimensional Journal Bearing
,”
ASME J. Lubr. Technol.
,
92
(
2
), pp.
482
489
.10.1115/1.3451447
5.
Wylie
,
G. M.
, and
Maday
,
C. J.
,
1970
, “
The Optimum One-Dimensional Hydrodynamic Gas Rayleigh Step Bearing
,”
ASME J. Lubr. Technol.
,
92
(
3
), pp.
504
508
.10.1115/1.3451457
6.
Seireg
,
A.
,
1972
, “
A Survey of Optimization of Mechanical Design
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
495
599
.10.1115/1.3428181
7.
Hirani
,
H.
,
Athre
,
K.
, and
Biswas
,
S.
,
2000
, “
Comprehensive Design Methodology for an Engine Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
4
), pp.
401
412
.10.1243/1350650001543287
8.
Changsen
,
W.
,
1991
,
Analysis of Rolling Element Bearings
,
Mechanical Engineering Publications Ltd.
,
London
.
9.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
10.
Chakraborty
,
I.
,
Kumar
,
V.
,
Nair
,
S. B.
, and
Tiwari
,
R.
,
2003
, “
Rolling Element Bearing Design Through Genetic Algorithm
,”
Eng. Optim.
,
35
(
6
), pp.
649
659
.10.1080/03052150310001624403
11.
Rao
,
R. B.
, and
Tiwari
,
R.
,
2007
, “
Optimum Design of Rolling Element Bearings Using Genetic Algorithms
,”
Mech. Mach. Theory
,
42
(
2
), pp.
233
250
.10.1016/j.mechmachtheory.2006.02.004
12.
Gupta
,
S.
,
Tiwari
,
R.
, and
Nair
,
S. B.
,
2007
, “
Multi-Objective Design Optimization of Rolling Bearings Using Genetic Algorithms
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1418
1443
.10.1016/j.mechmachtheory.2006.10.002
13.
Sunil
,
K. K.
,
Tiwari
,
R.
, and
Reddy
,
R. S.
,
2008
, “
Development of an Optimum Design Methodology of Cylindrical Roller Bearing Using Genetic Algorithms
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
, pp.
321
341
.10.1080/15502280802362995
14.
Sunil
,
K. K.
,
Tiwari
,
R.
, and
Prasad
,
P. V. V. N.
,
2009
, “
An Optimum Design of Crowned Cylindrical Roller Bearings Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
131
(5), p.
051011
.10.1115/1.3116344
15.
Tiwari
,
R.
,
Sunil
,
K. K.
, and
Reddy
,
R. S.
,
2012
, “
An Optimum Design Methodology of Tapered Roller Bearing Using Genetic Algorithms
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
13
(
2
), pp.
108
127
.10.1080/15502287.2011.654375
16.
Tudose
,
L.
,
Kulcsar
,
G.
, and
Stanescu
,
C.
,
2013
, “
Pareto Approach in Multi-Objective Optimal Design of Single-Row Cylindrical Rolling Bearings
,”
Power Transmission
(Mechanisms and Machine Science), Vol. 13, Springer, The Netherlands, pp. 519–528.10.1007/978-94-007-6558-0_41
17.
Dragoni
,
E.
,
2013
, “
Optimal Design of Radial Cylindrical Roller Bearings for Maximum Load Carrying Capacity
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
11
), pp.
2393
2401
.10.1177/0954406213477579
18.
Waghole
,
V.
, and
Tiwari
,
R.
,
2013
, “
Optimization of Needle Roller Bearing Design Using Novel Hybrid Methods
,”
Mech. Mach. Theory
,
72
(
1
), pp.
71
85
.10.1016/j.mechmachtheory.2013.10.001
19.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
,”
J. Global Optim.
,
39
(
3
), pp.
459
471
.10.1007/s10898-007-9149-x
20.
Karaboga
,
D.
, and
Basturk
,
B.
,
2008
, “
On the Performance of Artificial Bee Colony (ABC) Algorithm
,”
Appl. Soft Comput.
,
8
(
1
), pp.
687
697
.10.1016/j.asoc.2007.05.007
21.
SKF
,
2005
,
General Catalogue
,
Media print, Paderborn
,
Germany
.
22.
IS 3824
,
2003
,
Rolling Bearings: Dynamic Load Ratings and Rating Life
,
Bureau of Indian Standards
,
New Delhi
.
23.
Harris
,
T. A.
, and
Barnsby
,
R. M.
,
1998
, “
Tribology Performance Prediction of Aircraft Gas Turbine Mainshaft Ball Bearings
,”
Tribol. Trans.
,
41
(
1
), pp.
60
68
.10.1080/10402009808983722
24.
Hamrock
,
B. J.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
25.
Deb
,
K.
,
2003
,
Multi Objective Optimization for Engineering Design Algorithms
,
Prentice-Hall of India
,
New Delhi
.
26.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2
), pp.
311
338
.10.1016/S0045-7825(99)00389-8
You do not currently have access to this content.