Cold spray is a rapidly developing coating technology for depositing materials in the solid state. In this work, the cold spray particle deposition process was simulated by modeling high-velocity impacts of spherical particles onto a flat substrate under various conditions. For the first time, we proposed the coupled Eulerian–Lagrangian (CEL) numerical approach as a means of solving the high-strain rate deformation problem. Using this approach, we observed a compressive stress region at the interface between the particles and the substrate induced by large plastic strains in the materials. Due to the high contact pressure (about 1 GPa) and the short contact time (about 40 ns), the high-strain rate (106s-1) plastic deformation region was only a few micrometers deep and was localized mainly at the bottom of the particle and substrate surface. The ability of the CEL method to model the cold spray deposition process was assessed through a systematic parametric study including impact velocity, initial particle temperature, friction coefficient, and materials combination. The higher the impact velocity, the higher the initial kinetic energy, leading to more substantial plastic deformations and significant temperature increases in the substrate. The initial particle temperature has a greater influence on the equivalent plastic strain than on the temperature increase in the substrate. Friction has a limited effect on the temperature distribution and increase in the substrate, and the equivalent plastic strain increases only slightly as the friction coefficient rises. Four combinations of particle/substrate materials (Cu/Cu, Al/Al, Cu/Al, and Al/Cu) were considered in our study. Obviously, the particle's material had a greater influence on the deposition process and on the deformation than the substrate material. Concerning the particle's material, a higher-density material, such as Cu, has a higher initial kinetic energy, which has the advantage of increasing the contact area and contact time, resulting in better bonding between particles and substrate. Compared to other numerical methods (Lagrangian, arbitrary Lagrangian–Eulerian (ALE), and smooth particle hydrodynamics (SPH)), the CEL approach is globally more accurate and more robust in high-strain rate deformation regimes.

References

References
1.
Chaise
,
T.
,
Nélias
,
D.
, and
Sadeghi
,
F.
,
2011
, “
On the Effect of Isotropic Hardening on the Coefficient of Restitution for Single or Repeated Impacts Using a Semi-Analytical Method
,”
Tribol. Trans.
,
54
(
5
), pp.
714
722
.10.1080/10402004.2011.593113
2.
Chaise
,
T.
,
Li
,
J.
,
Nélias
,
D.
,
Kubler
,
R.
,
Taheri
,
S.
,
Douchet
,
G.
,
Robin
,
V.
, and
Gilles
,
P.
,
2012
, “
Modelling of Multiple Impacts for the Prediction of Distortions and Residual Stresses Induced by Ultrasonic Shot Peening (USP)
,”
J. Mater. Process. Technol.
,
212
(
10
), pp.
2080
2090
.10.1016/j.jmatprotec.2012.05.005
3.
Grujicic
,
M.
,
Zhao
,
C.
,
DeRosset
,
W.
, and
Helfritch
,
D.
,
2004
, “
Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process
,”
Mater. Des.
,
25
(
8
), pp.
681
688
.10.1016/j.matdes.2004.03.008
4.
Li
,
W.
,
Zhang
,
C.
,
Li
,
C.
, and
Liao
,
H.
,
2009
, “
Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis
,”
J. Therm. Spray Technol.
,
18
(
5–6
), pp.
921
933
.10.1007/s11666-009-9325-2
5.
Li
,
W.
, and
Gao
,
W.
,
2009
, “
Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis
,”
Appl. Surf. Sci.
,
255
(
18
), pp.
7878
7892
.10.1016/j.apsusc.2009.04.135
6.
Assadi
,
H.
,
Gärtner
,
F.
,
Stoltenhoff
,
T.
, and
Kreye
,
H.
,
2003
, “
Bonding Mechanism in Cold Gas Spraying
,”
Acta Mater.
,
51
(
15
), pp.
4379
4394
.10.1016/S1359-6454(03)00274-X
7.
Yildirim
,
B.
,
Muftu
,
S.
, and
Gouldstone
,
A.
,
2011
, “
Modeling of High Velocity Impact of Spherical Particles
,”
Wear
,
270
(
9–10
), pp.
703
713
.10.1016/j.wear.2011.02.003
8.
Bae
,
G.
,
Xiong
,
Y.
,
Kumar
,
S.
,
Kang
,
K.
, and
Lee
,
C.
,
2008
, “
General Aspects of Interface Bonding in Kinetic Sprayed Coatings
,”
Acta Mater.
,
56
(
17
), pp.
4858
4868
.10.1016/j.actamat.2008.06.003
9.
Kumar
,
S.
,
Bae
,
G.
, and
Lee
,
C.
,
2009
, “
Deposition Characteristics of Copper Particles on Roughened Substrates Through Kinetic Spraying
,”
Appl. Surf. Sci.
,
255
(
6
), pp.
3472
3479
.10.1016/j.apsusc.2008.10.060
10.
Li
,
W.
,
Liao
,
H.
,
Li
,
C.
,
Bang
,
H.-S.
, and
Coddet
,
C.
,
2007
, “
Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying
,”
Appl. Surf. Sci.
,
253
(
11
), pp.
5084
5091
.10.1016/j.apsusc.2006.11.020
11.
Yin
,
S.
,
Wang
,
X.
,
Li
,
W.
, and
Xu
,
B.
,
2009
, “
Numerical Investigation on Effects of Interactions Between Particles on Coating Formation in Cold Spraying
,”
J. Therm. Spray Technol.
,
18
(
4
), pp.
686
693
.10.1007/s11666-009-9390-6
12.
Yin
,
S.
,
Wang
,
X.
,
Xu
,
B.
, and
Li
,
W.
,
2010
, “
Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying
,”
J. Therm. Spray Technol.
,
19
(
5
), pp.
1032
1041
.10.1007/s11666-010-9489-9
13.
Yin
,
S.
,
Wang
,
X.
,
Li
,
W.
, and
Jie
,
H.
,
2011
, “
Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying
,”
Appl. Surf. Sci.
,
257
(
17
), pp.
7560
7565
.10.1016/j.apsusc.2011.03.126
14.
Li
,
W.
,
Liao
,
H.
,
Li
,
C.
,
Li
,
G.
,
Coddet
,
C.
, and
Wang
,
X.
,
2006
, “
On High Velocity Impact of Micro-Sized Metallic Particles in Cold Spraying
,”
Appl. Surf. Sci.
,
253
(
5
), pp.
2852
2862
.10.1016/j.apsusc.2006.05.126
15.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Bell
,
W.
,
Daqaq
,
M.
,
Ma
,
L.
,
Seyr
,
N.
,
Erdmann
,
M.
, and
Holzleitner
,
J.
,
2008
, “
A Computational Analysis and Suitability Assessment of Cold-Gas Dynamic Spraying of Glass-Fiber-Reinforced Poly-Amide 6 for Use in Direct-Adhesion Polymer Metal Hybrid Components
,”
Appl. Surf. Sci.
,
254
(
7
), pp.
2136
2145
.10.1016/j.apsusc.2007.08.077
16.
Ogawa
,
K.
,
Ito
,
K.
,
Ichimura
,
K.
,
Ichikawa
,
Y.
,
Ohno
,
S.
, and
Onda
,
N.
,
2008
, “
Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings
,”
J. Therm. Spray Technol.
,
17
(
5
), pp.
728
735
.10.1007/s11666-008-9254-5
17.
Takana
,
H.
,
Ogawa
,
K.
,
Shoji
,
T.
, and
Nishiyama
,
H.
,
2008
, “
Computational Simulation of Cold Spray Process Assisted by Electrostatic Force
,”
Powder Technol.
,
185
(
2
), pp.
116
123
.10.1016/j.powtec.2007.10.005
18.
Guetta
,
S.
,
Berger
,
M.
,
Borit
,
F.
,
Guipont
,
V.
,
Jeandin
,
M.
,
Boustie
,
M.
,
Ichikawa
,
Y.
,
Sakaguchi
,
K.
, and
Ogawa
,
K.
,
2009
, “
Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats
,”
J. Therm. Spray Technol.
,
18
(
3
), pp.
331
342
.10.1007/s11666-009-9327-0
19.
Ichikawa
,
Y.
,
Barradas
,
S.
,
Sakaguchi
,
K.
,
Jeandin
,
M.
,
Boustie
,
M.
,
Ogawa
,
K.
, and
Shoji
,
T.
,
2007
, “
Deposition Mechanisms of Cold Gas Dynamic Sprayed Mcraly Coatings
,”
International Thermal Spray Conference and Exposition
, pp.
54
59
.
20.
Champagne
,
V. J.
,
Helfritch
,
D.
,
Leyman
,
P.
,
Grendahl
,
S.
, and
Klotz
,
B.
,
2005
, “
Interface Material Mixing Formed by the Deposition of Copper on Aluminum by Means of the Cold Spray Process
,”
J. Therm. Spray Technol.
,
14
(
3
), pp.
330
334
.10.1361/105996305X59332
21.
Qiu
,
G.
,
Henke
,
S.
, and
Grabe
,
J.
,
2011
, “
Application of a Coupled Eulerian–Lagrangian Approach on Geomechanical Problems Involving Large Deformations
,”
Comput. Geotech.
,
38
(
1
), pp.
30
39
.10.1016/j.compgeo.2010.09.002
22.
Li
,
W.
,
Yin
,
S.
, and
Wang
,
X.
,
2010
, “
Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method
,”
Appl. Surf. Sci.
,
256
(
12
), pp.
3725
3734
.10.1016/j.apsusc.2010.01.014
23.
Manap
,
A.
,
Ogawa
,
K.
, and
Okabe
,
T.
,
2012
, “
Numerical Analysis of Interfacial Bonding of Al-Si Particle and Mild Steel Substrate by Cold Spray Technique Using the SPH Method
,”
J. Solid Mech. Mater. Eng.
,
6
(
3
), pp.
241
250
.10.1299/jmmp.6.241
24.
Manap
,
A.
,
Okabe
,
T.
, and
Ogawa
,
K.
,
2011
, “
Computer Simulation of Cold Sprayed Deposition Using Smoothed Particle Hydrodynamics
,”
Procedia Eng.
,
10
(
4
), pp.
1145
1150
.10.1016/j.proeng.2011.04.190
25.
Smojver
,
I.
, and
Ivančević
,
D.
,
2011
, “
Bird Strike Damage Analysis in Aircraft Structures Using Abaqus/Explicit and Coupled Eulerian Lagrangian Approach
,”
Compos. Sci. Technol.
,
71
(
4
), pp.
489
498
.10.1016/j.compscitech.2010.12.024
26.
Dassault Systemes
,
2011
,
abaqus Analysis User's Manue
,
6.11 ed.
, Simulia, Providence, Chap. 24.
27.
Manap
,
A.
,
2011
, “
Mechanical Analysis of Interfacial Bonding of Cold Sprayed Metallic Particles Using Smoothed Particle Hydrodynamics Method
,” Ph.D. thesis, Tohoku University, Sendai.
28.
King
,
P. C.
,
Bae
,
G.
,
Zahiri
,
S. H.
,
Jahedi
,
M.
, and
Lee
,
C.
,
2010
, “
An Experimental and Finite Element Study of Cold Spray Copper Impact Onto Two Aluminum Substrates
,”
J. Therm. Spray Technol.
,
19
(
3
), pp.
620
634
.10.1007/s11666-009-9454-7
29.
King
,
P.
,
Zahiri
,
S.
, and
Jahedi
,
M.
,
2008
, “
Focused Ion Beam Micro-Dissection of Cold-Sprayed Particles
,”
Acta Mater.
,
56
(
19
), pp.
5617
5626
.10.1016/j.actamat.2008.07.034
30.
Manap
,
A.
,
Ogawa
,
K.
, and
Okabe
,
T.
,
2011
, “
Numerical Analysis of Interfacial Bonding of Aluminum Powder Particle and Aluminum Substrate by Cold Spray Technique Using the SPH Method
,”
JSME/ASME 2011 ICMP2011
.
31.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
The 7th International Symposium on Ballistics
, pp.
541
547
.
32.
Swegle
,
J.
,
Attaway
,
S.
,
Heinstein
,
M.
,
Mello
,
F.
, and
Hicks
,
D.
,
1994
,
An Analysis of Smoothed Particle Hydrodynamics
, Sandia National Laboratories, Report No. SAND93-2513.
33.
Suhonen
,
T.
,
Varis
,
T.
,
Dosta
,
S.
,
Torrell
,
M.
, and
Guilemany
,
J.
,
2013
, “
Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings
,”
Acta Mater.
,
61
(
17
), pp.
6329
6337
.10.1016/j.actamat.2013.06.033
34.
Li
,
W.
,
Li
,
C.
, and
Yang
,
G.
,
2010
, “
Effect of Impact-Induced Melting on Interface Microstructure and Bonding of Cold Sprayed Zinc Coating
,”
Appl. Surf. Sci.
,
257
(
5
), pp.
1516
1523
.10.1016/j.apsusc.2010.08.089
35.
Grujicic
,
M.
,
Saylor
,
J.
,
Beasley
,
D.
,
DeRosset
,
W.
, and
Helfritch
,
D.
,
2003
, “
Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process
,”
Appl. Surf. Sci.
,
219
(
3–4
), pp.
211
227
.10.1016/S0169-4332(03)00643-3
36.
Lee
,
H. Y.
,
Yu
,
Y. H.
,
Lee
,
Y. C.
,
Hong
,
Y. P.
, and
Ko
,
K. H.
,
2004
, “
Interfacial Studies Between Cold Sprayed WO3 Y2O3 Films and Si Substrate
,”
Appl. Surf. Sci.
,
227
(
1–4
), pp.
244
249
.10.1016/j.apsusc.2003.11.073
37.
Lee
,
J.
,
Shin
,
S.
,
Kim
,
H.
, and
Lee
,
C.
,
2007
, “
Effect of Gas Temperature on Critical Velocity and Deposition Characteristics in Kinetic Spraying
,”
Appl. Surf. Sci.
,
253
(
7
), pp.
3512
3520
.10.1016/j.apsusc.2006.07.061
You do not currently have access to this content.