A transient lubrication model has been developed for the sliding interface between the slipper and swashplate in axial piston hydraulic pumps and motors. The model considers a nonisothermal fluid model, microdynamic motion of the slipper, as well as pressure and thermal deformations of the bounding solid bodies through a partitioned solution scheme. The separate contributions of elastohydrostatic and elastohydrodynamic lubrication are studied. Although hydrostatic deformation dominates, hydrodynamic effects are crucial for actual operation. Finally, the impact of transient deformation on lubricant pressure is explored, with its consideration necessary for accurate analysis.
Issue Section:
Hydrodynamic Lubrication
Keywords:
Elastohydrodynamic lubrication,
Fluid film lubrication,
Hydrodynamic lubrication,
Hydrostatic lubrication,
Pressurized bearings,
Squeeze films,
Thermoelastohydrodynamic lubrication
Topics:
Deformation,
Lubrication,
Pressure,
Transients (Dynamics),
Fluids,
Pistons,
Fluid films,
Hydrostatics
References
1.
Schenk
, A.
, and Ivantysynova
, M.
, 2014
, “A Transient Fluid Structure Interaction Model for Lubrication Between the Slipper and Swashplate in Axial Piston Machines
,” The 9th International Fluid Power Conference
, Mar. 24–26, Vol. 1
, pp. 398
–409
.2.
Koc
, E.
, Hooke
, C.
, and Li
, K.
, 1992
, “Slipper Balance in Axial Piston Pumps and Motors
,” ASME J. Tribol.
, 114
(4
), pp. 766
–772
.10.1115/1.29209463.
Koc
, E.
, and Hooke
, C.
, 1996
, “Investigation into the Effects of Orifice Size, Offset and Overclamp Ratio on the Lubrication of Slipper Bearings
,” Tribol. Int.
, 29
(4
), pp. 299
–305
.10.1016/0301-679X(95)00044-54.
Kazama
, T.
, and Yamaguchi
, A.
, 1993
, “Application of a Mixed Lubrication Model for Hydrostatic Thrust Bearings of Hydraulic Equipment
,” ASME J. Tribol.
, 115
(4
), pp. 686
–691
.10.1115/1.29216945.
Bergada
, J.
, Kumar
, S.
, Davies
, D. LI.
, and Watton
, J.
, 2011
, “A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples
,” Appl. Math. Model.
, 36
(4
), pp. 1731
–1751
.10.1016/j.apm.2011.09.0166.
Bergada
, J.
, Watton
, J.
, Haynes
, J.
, and Davies
, D.
, 2010
, “The Hydrostatic/Hydrodynamic Behavior of an Axial Piston Pump Slipper With Multiple Lands
,” Meccanica
, 45
(4
), pp. 585
–602
.10.1007/s11012-009-9277-07.
Pelosi
, M.
, and Ivantysynova
, M.
, 2012
, “Heat Transfer and Thermal Elastic Deformation Analysis on the Piston/Cylinder Interface of Axial Piston Machines
,” ASME J. Tribol.
, 134
(4
), pp. 1
–15
.10.1115/1.400069808.
Zecchi
, M.
, 2013
, “A Novel Fluid Structure Interaction and Thermal Model to Predict the Cylinder Block/Valve Plate Interface Performance in Swash Plate Type Axial Piston Machines
,” Ph.D. thesis, Purdue University, West Lafayette, IN.9.
Dhar
, S.
, and Vacca
, A.
, 2013
, “A Fluid Structure Interaction-EHD Model of the Lubricating Gaps in External Gear Machines: Formulation and Validation
,” Tribol. Int.
, 62
, pp. 78
–90
.10.1016/j.triboint.2013.02.00810.
Ivantysyn
, J.
, and Ivantysynova
, M.
, 2001
, Hydrostatic Pumps and Motors, Principles, Designs, Performance, Modeling, Analysis, Control, and Testing
, Academic Books International
, New Delhi, India
.11.
Wieczorek
, U.
, and Ivantysynova
, M.
, 2000
, “Caspar-A Computer-Aided Design Tool for Axial Piston Machines
,” Bath Workshop on Power Transmission and Motion Control
, University of Bath
, Bath, UK
, pp. 113
–126
.12.
Beschorner
, K.
, Higgs
, C.
, and Lovell
, M.
, 2009
, “Solution of Reynolds Equation in Polar Coordinates Applicable to Nonsymmetric Entrainment Velocities
,” ASME J. Tribol.
, 131
(3
), p. 034501
.10.1115/1.311878313.
Renard
, Y.
, 2011
, “Gmm++ User Documentation, Release 4.1.1
.” Available at: http://download.gna.org/getfem/html/homepage/gmm.html14.
Kudish
, I.
, 2002
, “A Conformal Lubricated Contact of Cylinder Surfaces Involved in a Non-Steady Motion
,” ASME J. Tribol.
, 124
(1
), pp. 62
–71
.10.1115/1.139829615.
Liu
, G.
, and Quek
, S.
, 2003
, The Finite Element Method: A Practical Course
, Elsevier Butterworth-Heinemann
, Burlington, MA
.16.
Intel Math Kernel Library 11 Update 5
, 2013
. Available at: https://software.intel.com/en-us/intel-mkl17.
Xiong
, S.
, Lin
, C.
, Wang
, Y.
, Liu
, W.
, and Wang
, Q. J.
, 2010
, “An Efficient Elastic Displacement Analysis Procedure for Simulating Transient Conformal-Contact Elastohydrodynamic Lubrication Systems
,” ASME J. Tribol.
, 132
(2
), p. 021502
.10.1115/1.400112018.
Li
, S.
, and Kahraman
, A.
, 2010
, “A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,” ASME J. Tribol.
, 132
(1
), p. 011501
.10.1115/1.400027019.
Chang
, L.
, 2000
, “A Simple and Accurate Method to Calculate Transient EHL Film Thickness in Machine Components Undergoing Operation Cycles
,” Tribol. Trans.
, 43
(1
), pp. 116
–122
.10.1080/1040200000898232020.
Gordon
, R.
, 1987
, Calculation and Measurement Techniques for Momentum, Energy and Mass Transfer (Series C), Module 4
, Vol. 7
, American Institute of Chemical Engineers. New York.21.
Patankar
, S.
, 1980
, Numerical Heat Transfer and Fluid Flow
, Hemisphere Publishing Corporation
, New York
.22.
Roelands
, C.
, 1966
, Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oils, V. R. B. Druk
, Groningen, The Netherlands
.23.
Dowson
, D.
, and Taylor
, C.
, 1967
, “Elastohydrostatic Lubrication of Circular Plate Thrust Bearings
,” ASME J. Lubr. Technol.
, 89
(3
), pp. 237
–242
.10.1115/1.361695724.
Manring
, N.
, Johnson
, R.
, and Cherukuri
, H.
, 2002
, “The Impact of Linear Deformations on Stationary Hydrostatic Thrust Bearings
,” ASME J. Tribol.
, 124
(4
), pp. 874
–877
.10.1115/1.1482118Copyright © 2015 by ASME
You do not currently have access to this content.