A transient lubrication model has been developed for the sliding interface between the slipper and swashplate in axial piston hydraulic pumps and motors. The model considers a nonisothermal fluid model, microdynamic motion of the slipper, as well as pressure and thermal deformations of the bounding solid bodies through a partitioned solution scheme. The separate contributions of elastohydrostatic and elastohydrodynamic lubrication are studied. Although hydrostatic deformation dominates, hydrodynamic effects are crucial for actual operation. Finally, the impact of transient deformation on lubricant pressure is explored, with its consideration necessary for accurate analysis.

References

1.
Schenk
,
A.
, and
Ivantysynova
,
M.
,
2014
, “
A Transient Fluid Structure Interaction Model for Lubrication Between the Slipper and Swashplate in Axial Piston Machines
,”
The 9th International Fluid Power Conference
, Mar. 24–26, Vol.
1
, pp.
398
409
.
2.
Koc
,
E.
,
Hooke
,
C.
, and
Li
,
K.
,
1992
, “
Slipper Balance in Axial Piston Pumps and Motors
,”
ASME J. Tribol.
,
114
(
4
), pp.
766
772
.10.1115/1.2920946
3.
Koc
,
E.
, and
Hooke
,
C.
,
1996
, “
Investigation into the Effects of Orifice Size, Offset and Overclamp Ratio on the Lubrication of Slipper Bearings
,”
Tribol. Int.
,
29
(
4
), pp.
299
305
.10.1016/0301-679X(95)00044-5
4.
Kazama
,
T.
, and
Yamaguchi
,
A.
,
1993
, “
Application of a Mixed Lubrication Model for Hydrostatic Thrust Bearings of Hydraulic Equipment
,”
ASME J. Tribol.
,
115
(
4
), pp.
686
691
.10.1115/1.2921694
5.
Bergada
,
J.
,
Kumar
,
S.
,
Davies
,
D. LI.
, and
Watton
,
J.
,
2011
, “
A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples
,”
Appl. Math. Model.
,
36
(
4
), pp.
1731
1751
.10.1016/j.apm.2011.09.016
6.
Bergada
,
J.
,
Watton
,
J.
,
Haynes
,
J.
, and
Davies
,
D.
,
2010
, “
The Hydrostatic/Hydrodynamic Behavior of an Axial Piston Pump Slipper With Multiple Lands
,”
Meccanica
,
45
(
4
), pp.
585
602
.10.1007/s11012-009-9277-0
7.
Pelosi
,
M.
, and
Ivantysynova
,
M.
,
2012
, “
Heat Transfer and Thermal Elastic Deformation Analysis on the Piston/Cylinder Interface of Axial Piston Machines
,”
ASME J. Tribol.
,
134
(
4
), pp.
1
15
.10.1115/1.40006980
8.
Zecchi
,
M.
,
2013
, “
A Novel Fluid Structure Interaction and Thermal Model to Predict the Cylinder Block/Valve Plate Interface Performance in Swash Plate Type Axial Piston Machines
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
9.
Dhar
,
S.
, and
Vacca
,
A.
,
2013
, “
A Fluid Structure Interaction-EHD Model of the Lubricating Gaps in External Gear Machines: Formulation and Validation
,”
Tribol. Int.
,
62
, pp.
78
90
.10.1016/j.triboint.2013.02.008
10.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2001
,
Hydrostatic Pumps and Motors, Principles, Designs, Performance, Modeling, Analysis, Control, and Testing
,
Academic Books International
,
New Delhi, India
.
11.
Wieczorek
,
U.
, and
Ivantysynova
,
M.
,
2000
, “
Caspar-A Computer-Aided Design Tool for Axial Piston Machines
,”
Bath Workshop on Power Transmission and Motion Control
,
University of Bath
,
Bath, UK
, pp.
113
126
.
12.
Beschorner
,
K.
,
Higgs
,
C.
, and
Lovell
,
M.
,
2009
, “
Solution of Reynolds Equation in Polar Coordinates Applicable to Nonsymmetric Entrainment Velocities
,”
ASME J. Tribol.
,
131
(
3
), p.
034501
.10.1115/1.3118783
13.
Renard
,
Y.
,
2011
, “
Gmm++ User Documentation, Release 4.1.1
.” Available at: http://download.gna.org/getfem/html/homepage/gmm.html
14.
Kudish
,
I.
,
2002
, “
A Conformal Lubricated Contact of Cylinder Surfaces Involved in a Non-Steady Motion
,”
ASME J. Tribol.
,
124
(
1
), pp.
62
71
.10.1115/1.1398296
15.
Liu
,
G.
, and
Quek
,
S.
,
2003
,
The Finite Element Method: A Practical Course
,
Elsevier Butterworth-Heinemann
,
Burlington, MA
.
16.
Intel Math Kernel Library 11 Update 5
,
2013
. Available at: https://software.intel.com/en-us/intel-mkl
17.
Xiong
,
S.
,
Lin
,
C.
,
Wang
,
Y.
,
Liu
,
W.
, and
Wang
,
Q. J.
,
2010
, “
An Efficient Elastic Displacement Analysis Procedure for Simulating Transient Conformal-Contact Elastohydrodynamic Lubrication Systems
,”
ASME J. Tribol.
,
132
(
2
), p.
021502
.10.1115/1.4001120
18.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
(
1
), p.
011501
.10.1115/1.4000270
19.
Chang
,
L.
,
2000
, “
A Simple and Accurate Method to Calculate Transient EHL Film Thickness in Machine Components Undergoing Operation Cycles
,”
Tribol. Trans.
,
43
(
1
), pp.
116
122
.10.1080/10402000008982320
20.
Gordon
,
R.
,
1987
,
Calculation and Measurement Techniques for Momentum, Energy and Mass Transfer (Series C), Module 4
, Vol.
7
, American Institute of Chemical Engineers. New York.
21.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
22.
Roelands
,
C.
,
1966
,
Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oils, V. R. B. Druk
,
Groningen, The Netherlands
.
23.
Dowson
,
D.
, and
Taylor
,
C.
,
1967
, “
Elastohydrostatic Lubrication of Circular Plate Thrust Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
237
242
.10.1115/1.3616957
24.
Manring
,
N.
,
Johnson
,
R.
, and
Cherukuri
,
H.
,
2002
, “
The Impact of Linear Deformations on Stationary Hydrostatic Thrust Bearings
,”
ASME J. Tribol.
,
124
(
4
), pp.
874
877
.10.1115/1.1482118
You do not currently have access to this content.