Functionally graded Al–Si12Cu/10 wt.% B4Cp metal matrix composite (MMC) has been fabricated under stir casting process followed by horizontal centrifugal casting method. The casting of length 170 mm, outer diameter 160 mm, and thickness 16 mm was obtained under the centrifugal speed of 1000 rev min−1. The microstructural evaluation was carried out on the surfaces at distance of 3, 6, 9, and 11 mm from the outer periphery of the casting to ensure the distribution of reinforcement particles, and the surfaces at same distance were tested for its hardness using microhardness tester. The microstructural results revealed that surface at a distance of 3 mm from the outer periphery has reinforcement concentration of 32% and surface at a distance of 11 mm has reinforcement concentration of 3%. The hardness of the surface was improved considerably according to the reinforcement concentration. The three-body abrasive wear test was conducted on the composite specimens as per L16 orthogonal array for parameters such as the load, speed, time, and reinforcement concentration. Each parameter was varied for four levels and the optimum level of each parameter was found out through signal-to-noise ratio analysis using “smaller-the-better” characteristics. The signal-to-noise ratio analysis revealed that load was the dominant parameter on the abrasive wear behavior followed by reinforcement concentration, speed, and time. The analysis of variance (ANOVA) result indicates the parameter that affects the response significantly and results were agreed with signal-to-noise ratio analysis. The regression equation was developed and results were validated using confirmation experiments. The worn-out surfaces were examined using scanning electron microscope (SEM) for observing the wear mechanism.

References

1.
Watson
,
I. G.
,
Forster
,
M. F.
,
Lee
,
P. D.
,
Dashwood
,
R. J.
,
Hamilton
,
R. W.
, and
Chirazi
,
A.
,
2005
, “
Investigation of the Clustering Behaviour of Titanium Diboride Particles in Aluminium
,”
Composites
,
36
(
9
), pp.
1177
1187
.10.1016/j.compositesa.2005.02.003
2.
Jiang Song
,
C.
,
Ming Xu
,
Z.
, and
Jian-Guo
,
L.
,
2007
, “
Fabrication of In Situ Al/Mg2Si Functionally Graded Materials by Electromagnetic Separation Method
,”
Composites
,
38
(
2
), pp.
427
433
.10.1016/j.compositesa.2006.03.002
3.
Alieldin
,
S. S.
,
Alshorbagy
,
A. E.
, and
Shaat
,
M. A.
,
2011
, “
First-Order Shear Deformation Finite Element Model for Elastostatic Analysis of Laminated Composite Plates and the Equivalent Functionally Graded Plates
,”
Ain Shams Eng. J.
,
2
(
1
), pp.
53
62
.10.1016/j.asej.2011.05.003
4.
Rajan
,
T. P. D.
,
Pillai
,
R. M.
, and
Pai
,
B. C.
,
2008
, “
Processing and Characterization of Functionally Graded Aluminium Alloy and Composites by Centrifugal Casting
,”
World Foundry Congress
, pp.
63
68
.
5.
Rajan
,
T. P. D.
,
Jayakumar
,
E.
, and
Pai
,
B. C.
,
2012
, “
Developments in Solidification Processing of Functionally Graded Aluminium Alloys and Composites by Centrifugal Casting Technique
,”
Trans. Indian Inst. Met.
,
65
(
6
), pp.
531
537
.10.1007/s12666-012-0191-0
6.
Chirita
,
G.
,
Soares
,
D.
, and
Silva
,
F. S.
,
2008
, “
Advantages of the Centrifugal Casting Technique for the Production of Structural Components With Al–Si Alloys
,”
Mater. Des.
,
29
(
1
), pp.
20
27
.10.1016/j.matdes.2006.12.011
7.
Keerthi Prasad
,
K. S.
,
Murali
,
M. S.
, and
Mukunda
,
P. G.
,
2010
, “
Analysis of Fluid Flow in Centrifugal Casting
,”
Front Mater. Sci. China
,
4
(
1
), pp.
103
110
.10.1007/s11706-010-0005-4
8.
Huang
,
X.
,
Liu
,
C.
,
Lv
,
X.
,
Liu
,
G.
, and
Li
,
F.
,
2011
, “
Aluminium Alloy Pistons Reinforced With SiC Fabricated by Centrifugal Casting
,”
J. Mater. Process. Technol.
,
211
(
9
), pp.
1540
1546
.10.1016/j.jmatprotec.2011.04.006
9.
Xiandong
,
S.
,
Chengping
,
L.
,
Zhuoxuan
,
L.
, and
Liuzhang
,
O.
,
1997
, “
The Fabrication and Properties of Particle Reinforced Cast Metal Matrix Composites
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
426
431
.10.1016/S0924-0136(96)02659-3
10.
Das
,
S.
,
2004
, “
Development of Aluminium Alloy Composites for Engineering Applications
,”
Trans. Indian Inst. Met.
,
57
(
4
), pp.
325
334
.
11.
Kumar
,
A.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
Modeling the Abrasive Wear Characteristics of In-Situ Synthesized Al–4.5%Cu/TiC Composites
,”
Wear
,
306
(
1–2
), pp.
170
178
.10.1016/j.wear.2013.08.013
12.
Radhika
,
N.
,
Subramanian
,
R.
, and
Venkat Prasat
,
S.
,
2011
, “
Tribological Behaviour of Aluminium/Alumina/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques
,”
J. Miner. Mater. Charact.
,
10
(
5
), pp.
427
443
.
13.
Humberto Melgarejo
,
Z.
,
Marcelo Suarez
,
O.
, and
Sridharan
,
K.
,
2006
, “
Wear Resistance of a Functionally-Graded Aluminium Matrix Composite
,”
Scr. Mater.
,
55
(
1
), pp.
95
98
.10.1016/j.scriptamat.2006.03.031
14.
Reza Derakshen
,
M.
,
Sina
,
H.
, and
Nazemi
,
H.
,
2011
, “
The Comparison of Microstructure and Hardness of Al-B And Al-Mg-B Composites
,”
Majilesi J. Mech. Eng.
,
4
(
4
), pp.
27
31
.
15.
Vieira
,
A. C.
,
Sequeira
,
P. D.
,
Gomes
,
J. R.
, and
Rocha
,
L. A.
,
2009
, “
Dry Sliding Wear of Al Alloy/SiCp Functionally Graded Composites: Influence of Processing Conditions
,”
Wear
,
267
(
1–4
), pp.
585
592
.10.1016/j.wear.2009.01.041
16.
Sahin
,
Y.
, and
Ozdin
,
K.
,
2008
, “
A Model for the Abrasive Wear Behaviour of Aluminium Based Composites
,”
Mater. Des.
,
29
(
3
), pp.
728
733
.10.1016/j.matdes.2007.02.013
17.
Ranganatha
,
S. R.
,
Chittappa
,
H. C.
, and
Tulsidas
,
D.
,
2013
, “
Investigation on Three-Body Abrasive Wear of Al2O3 Filler on CFRP Composites
,”
Int. J. Adv. Res. Stud.
,
2
(
3
), pp.
83
85
.
18.
Das
,
S.
,
Das
,
S.
, and
Das
,
K.
,
2007
, “
Abrasive Wear of Zircon Sand and Alumina Reinforced Al–4.5 wt.% Cu Alloy Matrix Composites—A Comparative Study
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
746
751
.10.1016/j.compscitech.2006.05.001
19.
Mondal
,
D. P.
, and
Das
,
S.
,
2006
, “
High Stress Abrasive Wear Behaviour of Aluminium Hard Particle Composites: Effect of Experimental Parameters, Particle Size and Volume Fraction
,”
Tribol. Int.
,
39
(
6
), pp.
470
478
.10.1016/j.triboint.2005.03.003
20.
Uvaraja
,
V. C.
, and
Natarajan
,
N.
,
2012
, “
Optimization on Friction and Wear Process Parameters Using Taguchi Technique
,”
Int. J. Eng. Technol.
,
2
(
4
), pp.
694
699
.
21.
Mishra
,
A. Kr.
,
Sheokand
,
R.
, and
Srivastava
,
R. K.
,
2012
, “
Tribological Behaviour of Al 6061/SiC Metal Matrix Composite by Taguchi's Techniques
,”
Int. J. Sci. Res. Publ.
,
2
(
10
), pp.
1
8
.
22.
Pradeep
,
Katyal, P.
, and
Gulati
,
V.
,
2013
, “
Effect of Weight Percentage of SiC on Coefficient of Friction and Wear Behaviour of Al(6351)–SiC Metal Matrix Composite
,”
Int. J. Res. Aeronaut. Mech. Eng.
,
1
(
6
), pp.
23
41
.
23.
Izciler
,
M.
, and
Muratoglu
,
M.
,
2003
, “
Wear Behaviour of SiC Reinforced 2124 Al Alloy Composite in RWAT System
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
67
72
.10.1016/S0924-0136(02)00263-7
24.
Kok
,
M.
, and
Ozdin
,
K.
,
2007
, “
Wear Resistance of Aluminium Alloy and Its Composites Reinforced By Al2O3 Particles
,”
J. Mater. Process. Technol.
,
183
(
2
), pp.
301
309
.10.1016/j.jmatprotec.2006.10.021
25.
Canakci
,
A.
, and
Arslan
,
F.
,
2012
, “
Abrasive Wear Behaviour of B4C Particle Reinforced Al 2024 MMCs
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
785
795
.10.1007/s00170-012-3931-8
You do not currently have access to this content.