In a series of publications, the author has shown that the passage of ductile microparticles through elastohydrodynamic (EHD) contacts results in frictional heating that can greatly affect surface damage. The thermoviscoplastic numerical model built for those studies is extended in the present article. A more rigorous analysis of dynamic (strain-rate) effects is performed and a new element of heating is introduced, namely, that owed to plastic work of the surfaces being indented. The model is then quantitatively validated against experimental data on soft and hard particles extruded in rolling and rolling–sliding contacts. It is also compared to past numerical predictions of the author. Following its validation, the model is further expanded to predict the formation of dark and white tribochemical layers of overtempered and untempered martensite, respectively, on steel surfaces, caused by the particle-induced frictional heating. Such layers are well-known in machining processes of hardened steels as being the result of phase transformations and play a critical role in contact fatigue. The debris model in this article is used to predict the layer thickness and relative hardness for a variety of operating conditions. Layers of micrometric thickness are typically found and graphic examples are presented, linking their location to that of debris dents. A parametric study examines the role of particle size and hardness, Coulomb friction coefficient, and contact rolling velocity on dark and white layer thickness and relative hardness. The layers are zones of great inhomogeneity and thermomechanical anisotropy, increasing the risk of spalling by delamination as they are potential sources of crack initiation, particularly in sliding contacts. However, white layers in particular may actually be beneficial to contact fatigue in rolling contacts because of their substantially increased hardness. The conclusion of the study is that debris-driven surface indentation and abrasion should no longer be viewed from a purely mechanistic or geometrical perspective but has to consider the tribochemical or microstructural-modification factor for the correct evaluation of the remaining useful life of a dented or abraded contact.

References

1.
Nikas
,
G. K.
,
2010
, “
A State-of-the-Art Review on the Effects of Particulate Contamination and Related Topics in Machine-Element Contacts
,”
J. Eng. Tribol.
,
224
(
5
), pp.
453
479
.
2.
Nikas
,
G. K.
,
2009
, “
Review of Studies on the Detrimental Effects of Solid Contaminants in Lubricated Machine Element Contacts
,”
Reliability Engineering Advances
,
G. I.
Hayworth
, ed.,
Nova Science Publishers
,
New York
, pp.
1
44
.
3.
Kjer
,
T.
,
1981
, “
Particles in New Motor Oils
,”
Wear
,
69
(
3
), pp.
395
396
.10.1016/0043-1648(81)90329-X
4.
Leng
,
J. A.
, and
Davies
,
J. E.
,
1988
, “
Ferrographic Examination of Unused Lubricants for Diesel Engines
,”
Wear
,
122
(
1
), pp.
115
119
.10.1016/0043-1648(88)90011-7
5.
Dwyer-Joyce
,
R. S.
,
2004
, “
The Life Cycle of a Debris Particle
,”
Proceedings of the 31st Leeds-Lyon Symposium on Tribology
, Leeds, UK. Sept. 7–10,
Elsevier
,
Amsterdam
, Vol.
48
, pp.
681
690
.
6.
Jones
,
M. H.
,
1983
, “
Wear Debris Associated With Diesel Engine Operation
,”
Wear
,
90
(
1
), pp.
75
88
.10.1016/0043-1648(83)90047-9
7.
Stachowiak
,
G. W.
,
Kirk
,
T. B.
, and
Stachowiak
,
G. B.
,
1991
, “
Ferrography and Fractal Analysis of Contamination Particles in Unused Lubricating Oils
,”
Tribol. Int.
,
24
(
6
), pp.
329
334
.10.1016/0301-679X(91)90002-Q
8.
Roylance
,
B. J.
, and
Hunt
,
T. M.
,
1999
,
Wear Debris Analysis
,
Coxmoor Publishing Company
,
Oxford
.
9.
Roylance
,
B. J.
,
Williams
,
J. A.
, and
Dwyer-Joyce
,
R.
,
2000
, “
Wear Debris and Associated Wear Phenomena—Fundamental Research and Practice
,”
J. Eng. Tribol.
,
214
(
1
), pp.
79
105
.
10.
Glaeser
,
W. A.
,
2001
, “
Wear Debris Classification
,”
Modern Tribology Handbook
,
B.
Bhushan
, ed.,
CRC Press
,
Boca Raton
, pp.
301
315
.
11.
Williams
,
J. A.
,
2005
, “
Wear and Wear Particles—Some Fundamentals
,”
Tribol. Int.
,
38
(
10
), pp.
863
870
.10.1016/j.triboint.2005.03.007
12.
Hirano
,
F.
, and
Yamamoto
,
S.
,
1959
, “
Four-Ball Test on Lubricating Oils Containing Solid Particles
,”
Wear
,
2
(
5
), pp.
349
363
.10.1016/0043-1648(59)90089-4
13.
Fitzsimmons
,
B.
, and
Clevenger
,
H. D.
,
1977
, “
Contaminated Lubricants and Tapered Roller Bearing Wear
,”
ASLE Trans.
,
20
(
2
), pp.
97
107
.10.1080/05698197708982822
14.
Fodor
,
J.
,
1979
, “
Improving Utilisation of Potential I.C. Engine Life by Filtration
,”
Tribol. Int.
,
12
(
3
), pp.
127
129
.10.1016/0301-679X(79)90050-1
15.
Ronen
,
A.
,
Malkin
,
S.
, and
Loewy
,
K.
,
1980
, “
Wear of Dynamically Loaded Hydrodynamic Bearings by Contaminant Particles
,”
ASME J. Lubr. Technol.
,
102
(
4
), pp.
452
458
.10.1115/1.3251580
16.
Ronen
,
A.
, and
Malkin
,
S.
,
1981
, “
Wear Mechanism of Statically Loaded Hydrodynamic Bearings by Contaminant Abrasive Particles
,”
Wear
,
68
(
3
), pp.
371
389
.10.1016/0043-1648(81)90183-6
17.
Ronen
,
A.
, and
Malkin
,
S.
,
1983
, “
Investigation of Friction and Wear of Dynamically Loaded Hydrodynamic Bearings With Abrasive Contaminants
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
559
569
.10.1115/1.3254671
18.
Khorshid
,
E. A.
, and
Nawwar
,
A. M.
,
1991
, “
A Review of the Effect of Sand Dust and Filtration on Automobile Engine Wear
,”
Wear
,
141
(
2
), pp.
349
371
.10.1016/0043-1648(91)90279-4
19.
Rabinowicz
,
E.
, and
Mutis
,
A.
, “
Effect of Abrasive Particle Size on Wear
,”
Wear
,
1965
,
8
(
5
), pp.
381
390
.10.1016/0043-1648(65)90169-9
20.
Larsen-Badse
,
J.
,
1968
, “
Influence of Grit Size on the Groove Formation During Sliding Abrasion
,”
Wear
,
11
(
3
), pp.
213
222
.10.1016/0043-1648(68)90559-0
21.
Larsen-Badse
,
J.
,
1968
, “
Influence of Grit Diameter and Specimen Size on Wear During Sliding Abrasion
,”
Wear
,
12
(
1
), pp.
35
53
.10.1016/0043-1648(68)90574-7
22.
Richardson
,
R. C. D.
,
1968
, “
The Wear of Metals by Relatively Soft Abrasives
,”
Wear
,
11
(
4
), pp.
245
275
.10.1016/0043-1648(68)90175-0
23.
Xuan
,
J. L.
,
Hong
,
I. T.
, and
Fitch
,
E. C.
,
1989
, “
Hardness Effect on Three-Body Abrasive Wear Under Fluid Film Lubrication
,”
ASME J. Tribol.
,
111
(
1
), pp.
35
40
.10.1115/1.3261876
24.
Williams
,
J. A.
, and
Hyncica
,
A. M.
,
1992
, “
Abrasive Wear in Lubricated Contacts
,”
J. Phys. D. Appl. Phys.
,
25
(
1A
), pp.
81
90
.10.1088/0022-3727/25/1A/015
25.
Dwyer-Joyce
,
R. S.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1994
, “
An Investigation Into the Mechanisms of Closed Three-Body Abrasive Wear
,”
Wear
,
175
(
1–2
), pp.
133
142
.10.1016/0043-1648(94)90176-7
26.
Hamilton
,
R. W.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1997
, “
Wear Due to Debris Particles in Rolling Bearing Contacts
,”
Proceedings of the 24th Leeds-Lyon Symposium on Tribology
, London, Sept. 4–6,
Elsevier
,
Amsterdam
, Vol.
34
, pp.
87
93
.
27.
Dwyer-Joyce
,
R. S.
,
1999
, “
Predicting the Abrasive Wear of Ball Bearings by Lubricant Debris
,”
Wear
,
233–235
, pp.
692
701
.10.1016/S0043-1648(99)00184-2
28.
Grieve
,
D. G.
,
Dwyer-Joyce
,
R. S.
, and
Beynon
,
J. H.
,
2001
, “
Abrasive Wear of Railway Track by Solid Contaminants
,”
J. Rail Rapid Transit
,
215
(
3
), pp.
193
205
.10.1243/0954409011531512
29.
Nilsson
,
R.
,
Dwyer-Joyce
,
R. S.
, and
Olofsson
,
U.
,
2006
, “
Abrasive Wear of Rolling Bearings by Lubricant Borne Particles
,”
J. Eng. Tribol.
,
220
(
5
), pp.
429
439
.
30.
Green
,
D. A.
, and
Lewis
,
R.
,
2008
, “
The Effects of Soot-Contaminated Engine Oil on Wear and Friction: A Review
,”
J. Auto. Engin.
,
222
(
9
), pp.
1669
1689
.10.1243/09544070JAUTO468
31.
Wan
,
G. T. Y.
, and
Spikes
,
H. A.
,
1987
, “
The Behavior of Suspended Solid Particles in Rolling and Sliding Elastohydrodynamic Contacts
,”
Tribol. Trans.
,
31
(
1
), pp.
12
21
.10.1080/10402008808981793
32.
Enthoven
,
J. C.
, and
Spikes
,
H. A.
,
1994
, “
Visual Observation of the Process of Scuffing
,”
Proceedings of the 21st Leeds-Lyon Symposium on Tribology
, Leeds, UK. September 6–9,
Elsevier
,
Amsterdam
, Vol.
30
, pp.
487
494
.
33.
Nikas
,
G. K.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1998
, “
Effects of Debris Particles in Sliding/Rolling Elastohydrodynamic Contacts
,”
J. Eng. Tribol.
,
212
(
5
), pp.
333
343
.
34.
Nikas
,
G. K.
,
1999
, “
Theoretical Modelling of the Entrainment and Thermomechanical Effects of Contamination Particles in Elastohydrodynamic Contacts
,” Ph.D. thesis, Department of Mechanical Engineering, Imperial College London, London.
35.
Sato
,
H.
,
Tokuoka
,
N.
,
Yamamoto
,
H.
, and
Sasaki
,
M.
,
1999
, “
Study of Wear Mechanism by Soot Contaminated in Engine Oil
,” SAE Paper No. 1999-01-3573.
36.
Nikas
,
G. K.
,
2002
, “
Particle Entrainment in Elastohydrodynamic Point Contacts and Related Risks of Oil Starvation and Surface Indentation
,”
ASME J. Tribol.
,
124
(
3
), pp.
461
467
.10.1115/1.1467083
37.
Green
,
D. A.
,
Lewis
,
R.
, and
Dwyer-Joyce
,
R. S.
,
2006
, “
The Wear Effects and Mechanisms of Soot Contaminated Automotive Lubricants
,”
J. Eng. Tribol.
,
220
(
3
), pp.
159
169
.
38.
Miettinen
,
J.
, and
Andersson
,
P.
,
2000
, “
Acoustic Emission of Rolling Bearings Lubricated With Contaminated Grease
,”
Tribol. Int.
,
33
(
11
), pp.
777
787
.10.1016/S0301-679X(00)00124-9
39.
Peng
,
Z.
,
Kessissoglou
,
N. J.
, and
Cox
,
M.
,
2005
, “
A Study of the Effect of Contaminant Particles in Lubricants Using Wear Debris and Vibration Condition Monitoring Techniques
,”
Wear
,
258
(
11–12
), pp.
1651
1662
.10.1016/j.wear.2004.11.020
40.
Akagaki
,
T.
,
Nakamura
,
M.
,
Monzen
,
T.
, and
Kawabata
,
M.
,
2006
, “
Analysis of the Behaviour of Rolling Bearings in Contaminated Oil Using Some Condition Monitoring Techniques
,”
J. Eng. Tribol.
,
220
(
5
), pp.
447
453
.
41.
Sari
,
M. R.
,
Haiahem
,
A.
, and
Flamand
,
L.
,
2007
, “
Effect of Lubricant Contamination on Gear Wear
,”
Tribol. Lett.
,
27
(
1
), pp.
119
126
.10.1007/s11249-007-9215-z
42.
Masuko
,
M.
,
Suzuki
,
A.
, and
Ueno
,
T.
,
2006
, “
Influence of Physical and Chemical Contaminants on the Antiwear Performance of Model Automotive Engine Oil
,”
J. Eng. Tribol.
,
220
(
5
), pp.
455
462
.
43.
Yamaguchi
,
E. S.
,
Untermann
,
M.
,
Roby
,
S. H.
,
Ryason
,
P. R.
, and
Yeh
,
S. W.
,
2006
, “
Soot Wear in Diesel Engines
,”
J. Eng. Tribol.
,
220
(
5
), pp.
463
469
.
44.
Booth
,
J. E.
,
Nelson
,
K. D.
,
Harvey
,
T. J.
,
Wood
,
R. J. K.
,
Wang
,
L.
,
Powrie
,
H. E. G.
, and
Martinez
,
J. G.
,
2006
, “
The Feasibility of Using Electrostatic Monitoring to Identify Diesel Lubricant Additives and Soot Contamination Interactions by Factorial Analysis
,”
Tribol. Int.
,
39
(
12
), pp.
1564
1575
.10.1016/j.triboint.2006.04.004
45.
Moon
,
M.
,
2007
, “
How Clean are Your Lubricants?
,”
Trends Food Sci. Technol.
,
18
(
Suppl. 1
), pp.
S74
S88
.10.1016/j.tifs.2006.11.002
46.
Mizuhara
,
K.
,
Tomimoto
,
M.
, and
Yamamoto
,
T.
,
2000
, “
Effect of Particles on Lubricated Friction
,”
Tribol. Trans.
,
43
(
1
), pp.
51
56
.10.1080/10402000008982312
47.
Tomimoto
,
M.
,
Mizuhara
,
K.
, and
Yamamoto
,
T.
,
2002
, “
Effect of Particles on Lubricated Friction—Theoretical Analysis of Friction Caused by Particles in Journal Bearing
,”
Tribol. Trans.
,
45
(
1
), pp.
47
54
.10.1080/10402000208982520
48.
Roach
,
A. E.
,
1951
, “
Performance of Oil-Film Bearings With Abrasive Containing Lubrication
,”
ASME Trans.
,
73
, pp.
677
686
.
49.
Rylander
,
H. G.
,
1952
, “
Effects of Solid Inclusions in Sleeve-Bearing Oil Supply
,”
Mech. Eng.
,
74
, pp.
963
966
.
50.
Broeder
,
J. J.
, and
Heijnekamp
,
J. W.
,
1965–1966
, “
Abrasive Wear of Journal Bearings by Particles in the Oil
,”
Proc. Inst. Mech. Eng.
,
180
(
11
), pp.
21
31
.
51.
Sari
,
M. R.
,
Ville
,
F.
,
Haiahem
,
A.
, and
Flamand
,
L.
,
2010
, “
Effect of Lubricant Contamination on Friction and Wear in an EHL Sliding Contact
,”
Mechanika
,
82
(
2
), pp.
43
49
.
52.
Handschuh
,
R. F.
, and
Krantz
,
T. L.
,
2010
, “
Engagement of Metal Debris Into a Gear Mesh
,” The National Aeronautics and Space Administration, Washington, DC, Report No. NASA/TM 2010-216759.
53.
Needelman
,
W. M.
, and
Zaretsky
,
E. V.
,
1991
, “
Quantifying Oil Filtration Effects on Bearing Life
,” The National Aeronautics and Space Administration, Washington, DC, Report No. NASA TM 104350.
54.
Okamoto
,
J.
,
Fujita
,
K.
, and
Toshioka
,
T.
,
1972
, “
Effects of Solid Particles in Oil on the Life of Ball Bearings
,”
J. Mech. Eng. Lab. (Tokyo)
,
26
(
5
), pp.
228
238
(NASA Technical Translation, NASA TT F-15, 653, June 1974).
55.
Dalal
,
H.
,
Cotellesse
,
G.
,
Morrison
,
F.
, and
Ninos
,
N.
,
1974
, “
Progression of Surface Damage in Rolling Contact Fatigue
,” SKF Industries Inc., King of Prussia PA Research Lab, Report No. SKF-AL74TO02.
56.
Tallian
,
T. E.
,
1976
, “
Prediction of Rolling Contact Fatigue Life in Contaminated Lubricant: Part II—Experimental
,”
ASME J. Lubr. Technol.
,
98
(
3
), pp.
384
392
.10.1115/1.3452865
57.
Loewenthal
,
S. H.
, and
Moyer
,
D. W.
,
1979
, “
Filtration Effects on Ball Bearing Life and Condition in a Contaminated Lubricant
,”
J. Lubr. Technol.
,
101
(
2
), pp.
171
176
.10.1115/1.3453307
58.
Bhachu
,
R. S.
,
1980
, “
The Influence of Debris on Rolling Fatigue Life
,” Ph.D. thesis, University of London, London.
59.
Sayles
,
R. S.
, and
Macpherson
,
P. B.
,
1982
, “
The Influence of Wear Debris on Rolling Contact Fatigue
,” Rolling Contact Fatigue Testing in Bearing Steels, ASTM STP 771, Philadelphia, pp.
255
275
.
60.
Bhachu
,
R.
,
Sayles
,
R. S.
, and
Macpherson
,
P. B.
,
1981
, “
The Influence of Filtration on Rolling Element Bearing Life
,”
Innovation for Maintenance Technology Improvements
,
T. R.
Shives
, and
W. A.
Willard
, eds.,
The National Aeronautics and Space Administration
,
Washington, DC
, pp.
326
347
.
61.
Loewenthal
,
S. H.
,
Moyer
,
D. W.
, and
Needelman
,
W. M.
,
1982
, “
Effects of Ultra-Clean and Centrifugal Filtration on Rolling-Element Bearing Life
,”
J. Lubr. Technol.
,
104
(
3
), pp.
283
291
.10.1115/1.3253194
62.
Webster
,
M. N.
,
Ioannides
,
E.
, and
Sayles
,
R. S.
,
1985
, “
The Effect of Topographical Defects on the Contact Stress and Fatigue Life in Rolling Element Bearings
,”
Proceedings of the 12th Leeds-Lyon Symposium on Tribology
, Lyon, France, Sept. 3–6,
Butterworth
,
London
, pp.
207
221
.
63.
Hamer
,
J. C.
,
Lubrecht
,
A. A.
,
Ioannides
,
E.
, and
Sayles
,
R. S.
,
1988
, “
Surface Damage on Rolling Elements and Its Subsequent Effects on Performance and Life
,”
Proceedings of the 15th Leeds-Lyon Symposium on Tribology
, Leeds, UK. Sept. 6–9,
Elsevier
,
Amsterdam, The Netherlands
, Elsevier Tribology and Interface Engineering Series, 14, pp.
189
197
.
64.
Dwyer-Joyce
,
R. S.
,
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1991
, “
Lubricant Screening for Debris Effects to Improve Fatigue and Wear Life
,”
Proceedings of the 18th Leeds-Lyon Symposium on Tribology
, Lyon, France, Sept. 3–6,
Elsevier
,
Amsterdam
, Vol.
21
, pp.
57
63
.
65.
Nixon
,
H. P.
, and
Zantopulos
,
H.
,
1995
, “
Fatigue Life Performance Comparisons of Tapered Roller Bearings With Debris-Damaged Raceways
,”
Lubr. Eng.
,
51
(
9
), pp.
732
736
.
66.
Chao
,
K. K.
,
Saba
,
C. S.
, and
Centers
,
P. W.
,
1996
, “
Effects of Lubricant Borne Solid Debris in Rolling Surface Contacts
,”
Tribol. Trans.
,
39
(
1
), pp.
13
22
.10.1080/10402009608983497
67.
Ville
,
F.
, and
Nelias
,
D.
,
1999
, “
Early Fatigue Failure Due to Dents in EHL Contacts
,”
Tribol. Trans.
,
42
(
4
), pp.
795
800
.10.1080/10402009908982285
68.
Kahlman
,
L.
, and
Hutchings
,
I. M.
,
1999
, “
Effect of Particulate Contamination in Grease-Lubricated Hybrid Rolling Bearings
,”
Tribol. Trans.
,
42
(
4
), pp.
842
850
.10.1080/10402009908982291
69.
Nélias
,
D.
, and
Ville
,
F.
,
2000
, “
Detrimental Effects of Debris Dents on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
122
(
1
), pp.
55
64
.10.1115/1.555329
70.
Nilsson
,
R.
,
Olofsson
,
U.
, and
Sundvall
,
K.
,
2005
, “
Filtration and Coating Effects on Self-Generated Particle Wear in Boundary Lubricated Roller Bearings
,”
Tribol. Int.
,
38
(
2
), pp.
145
150
.10.1016/j.triboint.2004.07.022
71.
Ville
,
F.
,
Coulon
,
S.
, and
Lubrecht
,
A. A.
,
2006
, “
Influence of Solid Contaminants on the Fatigue Life of Lubricated Machine Elements
,”
J. Eng. Tribol.
,
220
(
5
), pp.
441
445
.
72.
SKF General Catalogue
, Catalogue 5000 E, SKF, June
2003
.
73.
Ai
,
X.
,
2001
, “
Effect of Debris Contamination on the Fatigue Life of Roller Bearings
,”
J. Eng. Tribol.
,
215
(
6
), pp.
563
575
.
74.
General Motors Corporation
,
1971
,
New Departure Handbook
, 7th ed.,
General Motors Corporation
,
Bristol, CT
.
75.
Wedeven
,
L. D.
,
1979
, “
Diagnostics of Wear in Aeronautical Systems
,” The National Aeronautics and Space Administration, Washington, DC, Report No. NASA TM 79185.
76.
Cunningham
,
J. S.
, and
Morgan
,
M. A.
,
1979
, “
Review of Aircraft Bearing Rejection Criteria and Causes
,”
ASLE Lubr. Eng.
,
35
(
8
), pp.
435
441
.
77.
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1987
, “
Deformation Mechanisms and Stresses Created by 3rd Body Debris Contacts and Their Effects on Rolling Bearing Fatigue
,”
Proceedings of the 14th Leeds-Lyon Symposium on Tribology
, Lyon, France, Sept. 8–11,
Elsevier
,
Amsterdam
, Vol.
12
, pp.
201
208
.
78.
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1989
, “
Particle Deformation and Counterface Damage When Relatively Soft Particles are Squashed Between Hard Anvils
,”
Tribol. Trans.
,
32
(
3
), pp.
281
288
.10.1080/10402008908981890
79.
Hamer
,
J. C.
, and
Hutchinson
,
J.
,
1992
, “
Denting of Rolling Element Bearings by Third Body Particles
,” Tribology Group, Mechanical Engineering Department, Imperial College London, London, PCS Report No. 33/92.
80.
Dwyer-Joyce
,
R. S.
,
1993
, “
The Effects of Lubricant Contamination on Rolling Bearing Performance
,” Ph.D. thesis, Department of Mechanical Engineering, Imperial College London, London.
81.
Ko
,
C. N.
, and
Ioannides
,
E.
,
1989
, “
Debris Denting—The Associated Residual Stresses and Their Effect on the Fatigue Life of Rolling Bearings: An FEM Analysis
,”
Tribological Design of Machine Elements
,
D.
Dowson
, C. M. Taylor, M. Godet, and D. Berthe, eds.,
Elsevier
,
Amsterdam
, pp.
199
207
.
82.
Xu
,
G.
,
Sadeghi
,
F.
, and
Cogdell
,
J. D.
,
1997
, “
Debris Denting Effects on Elastohydrodynamic Lubricated Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
579
587
.10.1115/1.2833539
83.
Kang
,
Y. S.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
,
2004
, “
A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
71
80
.10.1115/1.1609483
84.
Antaluca
,
E.
, and
Nélias
,
D.
,
2008
, “
Contact Fatigue Analysis of a Dented Surface in a Dry Elastic–Plastic Circular Point Contact
,”
Tribol. Lett.
,
29
(
2
), pp.
139
153
.10.1007/s11249-007-9291-0
85.
Nikas
,
G. K.
,
2013
, “
Debris Particle Indentation and Abrasion of Machine-Element Contacts: An Experimentally Validated, Thermoelastoplastic Numerical Model With Micro-Hardness and Frictional Heating Effects
,”
J. Eng. Tribol.
,
227
(
6
), pp.
579
617
.
86.
Khonsari
,
M. M.
, and
Wang
,
S. H.
,
1990
, “
On the Role of Particulate Contamination in Scuffing Failure
,”
Wear
,
137
(
1
), pp.
51
62
.10.1016/0043-1648(90)90017-5
87.
Khonsari
,
M. M.
,
Pascovici
,
M. D.
, and
Kucinschi
,
B. V.
,
1999
, “
On the Scuffing Failure of Hydrodynamic Bearings in the Presence of an Abrasive Contaminant
,”
ASME J. Tribol.
,
121
(
1
), pp.
90
96
.10.1115/1.2833816
88.
Kusano
,
Y.
, and
Hutchings
,
I. M.
,
2003
, “
Modelling the Entrainment and Motion of Particles in a Gap: Application to Abrasive Wear
,”
J. Eng. Tribol.
,
217
(
6
), pp.
427
433
.
89.
Fang
,
L.
,
Liu
,
W.
,
Du
,
D.
,
Zhang
,
X.
, and
Xue
,
Q.
,
2004
, “
Predicting Three-Body Abrasive Wear Using Monte Carlo Methods
,”
Wear
,
256
(
7–8
), pp.
685
694
.10.1016/S0043-1648(03)00464-2
90.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2006
, “
Effect of Contamination on the Performance of Hydrodynamic Bearings
,”
J. Eng. Tribol.
,
220
(
5
), pp.
419
428
.
91.
Nikas
,
G. K.
,
Ioannides
,
E.
, and
Sayles
,
R. S.
,
1999
, “
Thermal Modeling and Effects From Debris Particles in Sliding/Rolling EHD Line Contacts—A Possible Local Scuffing Mode
,”
ASME J. Tribol.
,
121
(
2
), pp.
272
281
.10.1115/1.2833931
92.
Nikas
,
G. K.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1999
, “
Thermoelastic Distortion of EHD Line Contacts During the Passage of Soft Debris Particles
,”
ASME J. Tribol.
,
121
(
2
), pp.
265
271
.10.1115/1.2833930
93.
Nikas
,
G. K.
,
2001
, “
An Advanced Model to Study the Possible Thermomechanical Damage of Lubricated Sliding–Rolling Line Contacts From Soft Particles
,”
ASME J. Tribol.
,
123
(
4
), pp.
828
841
.10.1115/1.1331061
94.
Nikas
,
G. K.
,
2012
, “
An Experimentally Validated Numerical Model of Indentation and Abrasion by Debris Particles in Machine-Element Contacts Considering Micro-Hardness Effects
,”
J. Eng. Tribol.
,
226
(
5
), pp.
406
438
.
95.
Nikas
,
G. K.
,
2014
, “
Strain-Rate Effects on the Plastic Indentation and Abrasion of Elastohydrodynamic Contacts by Debris Particles
,”
J. Eng. Tribol.
,
228
(
1
), pp.
22
45
.
96.
Turley
,
D. M.
,
1975
, “
The Nature of the White-Etching Surface Layers Produced During Reaming Ultra-High Strength Steel
,”
Mater. Sci. Eng.
,
19
(
1
), pp.
79
86
.10.1016/0025-5416(75)90010-5
97.
Eda
,
H.
,
Kishi
,
K.
, and
Hashimoto
,
S.
,
1981
, “
The Formation Mechanism of Ground White Layers
,”
Bull. JSME
,
24
(
190
), pp.
743
747
.10.1299/jsme1958.24.743
98.
Griffiths
,
B. J.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
ASME J. Tribol.
,
109
(
3
), pp.
525
530
.10.1115/1.3261495
99.
Griffiths
,
B. J.
, and
Furze
,
D. C.
,
1987
, “
Tribological Advantages of White Layers Produced by Machining
,”
ASME J. Tribol.
,
109
(
2
), pp.
338
342
.10.1115/1.3261363
100.
Zhang
,
L.
, and
Mahdi
,
M.
,
1995
, “
Applied Mechanics in Grinding—IV. The Mechanism of Grinding Induced Phase Transformation
,”
Int. J. Mach. Tools Manuf.
,
35
(
10
), pp.
1397
1409
.10.1016/0890-6955(95)93590-3
101.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1999
, “
White Layers and Thermal Modeling of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1863
1881
.10.1016/S0890-6955(99)00036-X
102.
Schöfer
,
J.
,
Rehbein
,
P.
,
Stolz
,
U.
,
Löhe
,
D.
, and
Zum Gahr
,
K.-H.
,
2001
, “
Formation of Tribochemical Films and White Layers on Self-Mated Bearing Steel Surfaces in Boundary Lubricated Sliding Contact
,”
Wear
,
248
(
1–2
), pp.
7
15
.10.1016/S0043-1648(00)00549-4
103.
Akcan
,
S.
,
Shah
,
W. S.
,
Moylan
,
S. P.
,
Chandrasekar
,
S.
,
Chhabra
,
P. N.
, and
Yang
,
H. T. Y.
,
2002
, “
Formation of White Layers in Steels by Machining and Their Characteristics
,”
Metall. Mater. Trans. A
,
33
(
4
), pp.
1245
1254
.10.1007/s11661-002-0225-z
104.
Barbacki
,
A.
,
Kawalec
,
M.
, and
Hamrol
,
A.
,
2003
, “
Turning and Grinding as a Source of Microstructural Changes in the Surface Layer of Hardened Steel
,”
J. Mater. Process. Technol.
,
133
(
1–2
), pp.
21
25
.10.1016/S0924-0136(02)00211-X
105.
Ramesh
,
A.
,
Melkote
,
S. N.
,
Allard
,
L. F.
,
Riester
,
L.
, and
Watkins
,
T. R.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng. A
,
390
(
1–2
), pp.
88
97
.10.1016/j.msea.2004.08.052
106.
Han
,
S.
,
2006
, “
Mechanisms and Modeling of White Layer Formation in Orthogonal Machining of Steels
,” Ph.D. thesis, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
107.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.10.1016/j.ijmachtools.2007.09.007
108.
Umbrello
,
D.
,
Jayal
,
A. D.
,
Caruso
,
S.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2010
, “
Modeling of White and Dark Layer Formation in Hard Machining of AISI 52100 Bearing Steel
,”
Mach. Sci. Technol.
,
14
(
1
), pp.
128
147
.10.1080/10910340903586525
109.
Cho
,
D.-H.
,
Lee
,
S.-A.
, and
Lee
,
Y.-Z.
,
2012
, “
Mechanical Properties and Wear Behavior of the White Layer
,”
Tribol. Lett.
,
45
(
1
), pp.
123
129
.10.1007/s11249-011-9869-4
110.
Duan
,
C.
,
Kong
,
W.
,
Hao
,
Q.
, and
Zhou
,
F.
,
2013
, “
Modeling of White Layer Thickness in High Speed Machining of Hardened Steel Based on Phase Transformation Mechanism
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
59
70
.10.1007/s00170-013-5005-y
111.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
TEM Study on the Surface White Layer in Two Turned Hardened Steels
,”
Mater. Sci. Eng. A
,
325
(
1–2
), pp.
356
364
.10.1016/S0921-5093(01)01447-2
112.
Guo
,
Y. B.
, and
Sahni
,
J.
,
2004
, “
A Comparative Study of Hard Turned and Cylindrically Ground White Layers
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
135
145
.10.1016/j.ijmachtools.2003.10.009
113.
Mao
,
C.
,
Zhou
,
Z.
,
Zhang
,
J.
,
Huang
,
X.
, and
Gu
,
D.
,
2011
, “
An Experimental Investigation of Affected Layers Formed in Grinding of AISI 52100 Steel
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5–8
), pp.
515
523
.10.1007/s00170-010-2965-z
114.
Gao
,
X.-L.
,
2006
, “
An Expanding Cavity Model Incorporating Strain-Hardening and Indentation Size Effects
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6615
6629
.10.1016/j.ijsolstr.2006.01.008
115.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th international Symposium on Ballistics
,
The Hague
,
The Netherlands
, pp.
541
547
.
116.
Schwer
,
L.
,
2007
, “
Optional Strain-Rate Forms of the Johnson Cook Constitutive Model and the Role of the Parameter Epsilon_0
,”
Proceedings of the 6th European LS-DYNA Users' Conference
,
Anwenderforum, Frankenthal
,
Germany
.
117.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford
, Chap. II, Sec. 3.
118.
Nikas
,
G. K.
,
2002
, “
Fatigue Life and Traction Modeling of Continuously Variable Transmissions
,”
ASME J. Tribol.
,
124
(
4
), pp.
689
698
.10.1115/1.1491976
119.
Ravichandran
,
G.
,
Rosakis
,
A. J.
,
Hodowany
,
J.
, and
Rosakis
,
P.
,
2002
, “
On the Conversion of Plastic Work Into Heat During High-Strain-Rate Deformation
,” Shock Compression of Condensed Matter—2001,
M. D.
Furnich
,
N. N.
Thadhani
, and
Y.
Horie
, eds., 12th APS Topical Conference, June 24–29, 2001, Atlanta, Georgia, Vol. 620. Available at: http://scitation.aip.org/content/aip/proceeding/aipcp/620
120.
Pérez-Castellanos
,
J.-L.
, and
Rusinek
,
A.
,
2012
, “
Temperature Increase Associated With Plastic Deformation Under Dynamic Compression: Application to Aluminium Alloy AL 6082
,”
J. Theor. Appl. Mech.
,
50
(
2
), pp.
377
398
.
121.
Zaera
,
R.
,
Rodríguez-Martínez
,
J. A.
, and
Rittel
,
D.
,
2013
, “
On the Taylor–Quinney Coefficient in Dynamically Phase Transforming Materials. Application to 304 Stainless Steel
,”
Int. J. Plast.
,
40
, pp.
185
201
.10.1016/j.ijplas.2012.08.003
122.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
Oxford
, Chap. X.
123.
ASM International
,
1991
,
Heat Treating of Steels and Surface Hardening of Steel
, ASM Handbook, Heat Treating, vol.
4
,
ASM International
, Materials Park. OH.
124.
Beswick
,
J.
,
1984
, “
Effect of Prior Cold Work on the Martensite Transformation in SAE 52100
,”
Metall. Trans.
,
15
(2), pp.
299
306
.10.1007/BF02645115
125.
Ville
,
F.
, and
Nelias
,
D.
,
1999
, “
An Experimental Study of the Concentration and Shape of Dents Caused by Spherical Metallic Particles in EHL Contacts
,”
Tribol. Trans.
,
42
(
1
), pp.
231
240
.10.1080/10402009908982213
126.
Ville
,
F.
, and
Nelias
,
D.
,
1997
, “
Influence of the Nature and Size of Solid Particles on the Indentation Features in EHL Contacts
,”
Proceedings of the 24th Leeds-Lyon Symposium on Tribology
, London, Sept. 4–6,
Elsevier
,
Amsterdam
, Vol.
34
, pp.
399
409
.
You do not currently have access to this content.