Asperity radius of curvature and asperity density, which are generally obtained from rough surface simulation with fast Fourier transform (FFT), are the two essential parameters for statistical contact model. In simulation, however, the value of a parameter (defined as “autocorrelation function (ACF) truncation length” in this paper), which is arbitrarily chosen and has been paid little attention to in most relevant literature, is found to have a great effect on topography parameters, regardless of the methods chosen to calculate them. Improper determination of the ACF truncation length may induce erroneous results. This paper points out how to make the proper determination of the ACF truncation length to guarantee a certain degree of precision and explains why improper determination of the ACF truncation length may cause serious errors when calculating the topography parameters. Besides, the asperity radius of curvature and the asperity density of the generated rough surfaces are calculated using the eight-summit identification method, and their formulae in terms of correlation length are obtained through numerical fitting.

References

References
1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
2.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
.10.1115/1.3607616
3.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
634
.10.1243/PIME_PROC_1970_185_069_02
4.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptical Model for Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.10.1016/j.wear.2005.09.031
5.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2008
, “
Asperity Contact Theories: Do They Predict Linearity Between Contact Area and Load?
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2555
2572
.10.1016/j.jmps.2008.03.011
6.
Paggi
,
M.
, and
Ciavarella
,
M.
,
2010
, “
The Coefficient of Proportionality Between Real Contact Area and Load With New Asperity Models
,”
Wear
,
268
(
7–8
), pp.
1020
1029
.10.1016/j.wear.2009.12.038
7.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2011
, “
Contact Mechanics of Rough Surfaces: A Comparison Between Theories
,”
Meccanica
,
46
(
3
), pp.
557
565
.10.1007/s11012-010-9315-y
8.
McCool
,
J. I.
,
1986
, “
Predicting Microcontact in Ceramics Via a Microcontact Model
,”
ASME J. Tribol.
,
108
(
3
), pp.
380
386
.10.1115/1.3261209
9.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
264
270
.10.1115/1.3261349
10.
Lee
,
C. H.
, and
Polycarpou
,
A.
,
2007
, “
Static Friction Experiments and Verification of an Improved Elastic–Plastic Model Including Roughness Effects
,”
ASME J. Tribol.
,
129
(
4
), pp.
754
760
.10.1115/1.2768074
11.
Akbarzadeh
,
S.
, and
Khonsari
,
M.
,
2008
, “
Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant
,”
ASME J. Tribol.
,
130
(
2
), p.
021503
.10.1115/1.2805431
12.
Lee
,
C. H.
,
Eriten
,
M.
, and
Polycarpou
,
A.
,
2010
, “
Application of Elastic–Plastic Static Friction Models to Rough Surfaces With Asymmetric Asperity Distribution
,”
ASME J. Tribol.
,
132
(
3
), p.
031602
.10.1115/1.4001547
13.
Dickey
,
R. D. I.
,
Jackson
,
R.
, and
Flowers
,
G.
,
2011
, “
Measurements of the Static Friction Coefficient Between Tin Surfaces and Comparison to a Theoretical Model
,”
ASME J. Tribol.
,
133
(
3
), p.
031408
.10.1115/1.4004338
14.
Patir
,
N.
,
1978
, “
A Numerical Procedure for Random Generation of Rough Surfaces
,”
Wear
,
47
(
2
), pp.
263
277
.10.1016/0043-1648(78)90157-6
15.
Watson
,
W.
, and
Spedding
,
T.
,
1982
, “
The Time Series Modelling of Non-Gaussian Engineering Processes
,”
Wear
,
83
(
2
), pp.
215
231
.10.1016/0043-1648(82)90178-8
16.
Hu
,
Y.
, and
Tonder
,
K.
,
1992
, “
Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
,
32
(
1–2
), pp.
83
90
.10.1016/0890-6955(92)90064-N
17.
Wu
,
J. J.
,
2004
, “
Simulation of Non-Gaussian Surfaces With FFT
,”
Tribol. Int.
,
37
(
4
), pp.
339
346
.10.1016/j.triboint.2003.11.005
18.
Wu
,
J. J.
,
2000
, “
Simulation of Rough Surfaces With FFT
,”
Tribol. Int.
,
33
(
1
), pp.
47
58
.10.1016/S0301-679X(00)00016-5
19.
Manesh
,
K.
,
Ramamoorthy
,
B.
, and
Singaperumal
,
M.
,
2010
, “
Numerical Generation of Anisotropic 3D Non-Gaussian Engineering Surfaces With Specified 3D Surface Roughness Parameters
,”
Wear
,
268
(
11–12
), pp.
1371
1379
.10.1016/j.wear.2010.02.005
20.
Bakolas
,
V.
,
2003
, “
Numerical Generation of Arbitrarily Oriented Non-Gaussian Three-Dimensional Rough Surfaces
,”
Wear
,
254
(
5–6
), pp.
546
554
.10.1016/S0043-1648(03)00133-9
21.
Pawar
,
G.
,
Pawel
,
P.
,
Etsion
,
I.
, and
Raeymaekers
,
B.
,
2013
, “
The Effect of Determining Topography Parameters on Analyzing Elastic Contact Between Isotropic Rough Surfaces
,”
ASME J. Tribol.
,
135
(
1
), p.
011401
.10.1115/1.4007760
22.
Reizer
,
R.
,
2011
, “
Simulation of 3D Gaussian Surface Topography
,”
Wear
,
271
(
3–4
), pp.
539
543
.10.1016/j.wear.2010.04.009
23.
Yu
,
N.
, and
Polycarpou
,
A.
,
2004
, “
Extracting Summit Roughness Parameters From Random Gaussian Surfaces Accounting for Asymmetry of the Summit Heights
,”
ASME J. Tribol.
,
126
(
4
), pp.
761
766
.10.1115/1.1792698
24.
McCool
,
J. I.
,
1986
, “
Predicting Microfracture in Ceramics Via a Microfracture Model
,”
ASME J. Tribol.
,
108
(
3
), pp.
380
386
.10.1115/1.3261209
You do not currently have access to this content.