This paper concludes a series of papers outlining a new rolling-element bearing heat transfer model. Part I provided the model framework, Part II presented the partial differential equation (PDE) solutions, and Part III, this paper, presents full-scale test results for ball, cylindrical, spherical, and tapered rolling-element bearings. The results validate the heat partitioning equation and the predicted solid temperatures for circulating oil lubrication. In addition, sump lubrication was studied using an acrylic assembly. The results quantify what fraction of the bearing periphery is cooled by oil, as well as the flow of oil through a bearing. Finally, substantiation of the modeling assumptions is discussed.

References

1.
Hannon
,
W. M.
, 2015, “
Rolling-Element Bearing Heat Transfer—Part I: Analytic Model
,”
ASME J. Tribol.
137
(3), p. 031101.10.1115/1.4029732
2.
Hannon
,
W. M.
,
2015
, “
Rolling-Element Bearing Heat Transfer—Part II: Housing, Shaft, and Bearing Raceway Partial Differential Solutions
,”
ASME J. Tribol.
137
(3), p. 031102.10.1115/1.4029733
3.
Bates
,
S. J.
,
Sienz
,
J.
, and
Toropov
,
V. V.
,
2004
, “
Formulation of the Optimal Latin Hypercube Design of Experiments Using a Permutation Genetic Algorithm
,”
AIAA
Paper No. 2004-2011, pp.
1
7
.10.2514/6.2004-2011
4.
van Dam
,
E. R.
,
2008
, “
Two-Dimensional Minimax Latin Hypercube Designs
,”
CentER Discussion Paper
,
Tilburg University
,
Tilburg, The Netherlands
, Vol.
156
, pp.
3483
3493
.
5.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plann. Inference
,
134
(
1
), pp.
268
287
.10.1016/j.jspi.2004.02.014
6.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
,
2000
, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plann. Inference
,
90
(
1
), pp.
145
159
.10.1016/S0378-3758(00)00105-1
7.
Parker
,
R. J.
,
1984
, “
Comparison of Predicted and Experimental Thermal Performance of Angular Contact Ball Bearing
,” NASA Technical Paper No. 2275.
8.
Gupta
,
P. K.
,
2002
, “
Thermal Interactions in Rolling Bearing Dynamics
,” U.S. Department of Commerce, Clifton Park, NY, Report No. ADA409914.
9.
Pinel
,
S. I.
,
Singer
,
H. R.
, and
Zaretsky
,
E. V.
,
1998
, “
Design and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearings
,” Report No. NASA/TM 1988-206981.
10.
Blok
,
H.
,
1937
, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Lubrication Conditions
,”
Proceedings of the General Discussion on Lubrication
,
The Institution of Mechanical Engineers
, London, Vol. 2, pp.
222
235
.
11.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
,
76
(3), pp.
203
224
.
12.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1993
, “
Temperature Rise at the Sliding Contact Interface for a Coated Semi-Infinite Body
,”
ASME J. Tribol.
,
115
(
1
), pp.
1
9
.10.1115/1.2920976
13.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
(
1
), pp.
167
174
.10.1115/1.2927035
14.
Houpert
,
L.
,
1999
, “
Numerical and Analytical Calculations in Ball Bearings
,”
8th European Space Mechanism and Tribology Symposium
,
Toulouse, France
, Sept. 29, pp.
283
290
.
15.
Houpert
,
L.
,
2002
, “
Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical and Experimental Results
,”
STLE Trib. Trans.
,
45
(
3
), pp.
345
353
.10.1080/10402000208982559
16.
Biboulet
,
N.
, and
Houpert
,
L.
,
2010
, “
Hydrodynamic Force and Moment in Pure Rolling Lubricated Contact: Part I: Line Contacts
,”
J. Eng. Tribol.
,
224
(8), pp.
765
775
.
17.
Biboulet
,
N.
, and
Houpert
,
L.
,
2010
, “
Hydrodynamic Force and Moment in Pure Rolling Lubricated Contact: Part II: Point Contacts
,”
J. Eng. Tribol.
,
224
(8), pp.
777
787
.
18.
Harris
,
T.
, and
Kotzalas
,
M. N.
,
2007
,
Advanced Concepts of Bearing Technology
, 4th ed., Vol.
2
,
CRC Press
,
Boca Raton, FL
, pp.
191
208
.
19.
Yovanovich
,
M. M.
,
1998
, “
Application of Thermal Contact Resistance Theory to Electronic Packages
,”
Advances in Thermal Modeling of Electronic Components and Systems
, Vol. 1,
A. D.
Kraus
, and
A.
Bar-Choen
, eds.,
Hemisphere Publishing
,
New York
, pp.
79
128
.
20.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
1985
,
Introduction to Heat Transfer
. 3rd ed.,
Wiley
,
Jefferson City, MO
.
21.
Krieth
,
R.
,
1968
, “
Convection Heat Transfer in Rotating Systems
,”
Advances in Heat Transfer
, Vol.
5
, Elsevier, pp.
128
251
.
22.
Zaretsky
,
E. V.
,
Singer
,
H. R.
, and
Bamberger
,
E. N.
,
1974
, “
Operating Characteristics of 120 mm Bore Ball Bearings at 3 × 106 DN
,” Report No. NASA TN D-7837.
You do not currently have access to this content.