This paper concludes a series of papers outlining a new rolling-element bearing heat transfer model. Part I provided the model framework, Part II presented the partial differential equation (PDE) solutions, and Part III, this paper, presents full-scale test results for ball, cylindrical, spherical, and tapered rolling-element bearings. The results validate the heat partitioning equation and the predicted solid temperatures for circulating oil lubrication. In addition, sump lubrication was studied using an acrylic assembly. The results quantify what fraction of the bearing periphery is cooled by oil, as well as the flow of oil through a bearing. Finally, substantiation of the modeling assumptions is discussed.
Issue Section:
Applications
References
1.
Hannon
, W. M.
, 2015, “Rolling-Element Bearing Heat Transfer—Part I: Analytic Model
,” ASME J. Tribol.
137
(3), p. 031101.10.1115/1.40297322.
Hannon
, W. M.
, 2015
, “Rolling-Element Bearing Heat Transfer—Part II: Housing, Shaft, and Bearing Raceway Partial Differential Solutions
,” ASME J. Tribol.
137
(3), p. 031102.10.1115/1.40297333.
Bates
, S. J.
, Sienz
, J.
, and Toropov
, V. V.
, 2004
, “Formulation of the Optimal Latin Hypercube Design of Experiments Using a Permutation Genetic Algorithm
,” AIAA
Paper No. 2004-2011, pp. 1
–7
.10.2514/6.2004-20114.
van Dam
, E. R.
, 2008
, “Two-Dimensional Minimax Latin Hypercube Designs
,” CentER Discussion Paper
, Tilburg University
, Tilburg, The Netherlands
, Vol. 156
, pp. 3483
–3493
.5.
Jin
, R.
, Chen
, W.
, and Sudjianto
, A.
, 2005
, “An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,” J. Stat. Plann. Inference
, 134
(1
), pp. 268
–287
.10.1016/j.jspi.2004.02.0146.
Ye
, K. Q.
, Li
, W.
, and Sudjianto
, A.
, 2000
, “Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,” J. Stat. Plann. Inference
, 90
(1
), pp. 145
–159
.10.1016/S0378-3758(00)00105-17.
Parker
, R. J.
, 1984
, “Comparison of Predicted and Experimental Thermal Performance of Angular Contact Ball Bearing
,” NASA Technical Paper No. 2275.8.
Gupta
, P. K.
, 2002
, “Thermal Interactions in Rolling Bearing Dynamics
,” U.S. Department of Commerce, Clifton Park, NY, Report No. ADA409914.9.
Pinel
, S. I.
, Singer
, H. R.
, and Zaretsky
, E. V.
, 1998
, “Design and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearings
,” Report No. NASA/TM 1988-206981.10.
Blok
, H.
, 1937
, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Lubrication Conditions
,” Proceedings of the General Discussion on Lubrication
, The Institution of Mechanical Engineers
, London, Vol. 2, pp. 222
–235
.11.
Jaeger
, J. C.
, 1942
, “Moving Sources of Heat and the Temperature at Sliding Contacts
,” J. Proc. R. Soc. N. S. W.
, 76
(3), pp. 203
–224
.12.
Tian
, X.
, and Kennedy
, F. E.
, 1993
, “Temperature Rise at the Sliding Contact Interface for a Coated Semi-Infinite Body
,” ASME J. Tribol.
, 115
(1
), pp. 1
–9
.10.1115/1.292097613.
Tian
, X.
, and Kennedy
, F. E.
, 1994
, “Maximum and Average Flash Temperatures in Sliding Contacts
,” ASME J. Tribol.
, 116
(1
), pp. 167
–174
.10.1115/1.292703514.
Houpert
, L.
, 1999
, “Numerical and Analytical Calculations in Ball Bearings
,” 8th European Space Mechanism and Tribology Symposium
, Toulouse, France
, Sept. 29, pp. 283
–290
.15.
Houpert
, L.
, 2002
, “Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical and Experimental Results
,” STLE Trib. Trans.
, 45
(3
), pp. 345
–353
.10.1080/1040200020898255916.
Biboulet
, N.
, and Houpert
, L.
, 2010
, “Hydrodynamic Force and Moment in Pure Rolling Lubricated Contact: Part I: Line Contacts
,” J. Eng. Tribol.
, 224
(8), pp. 765
–775
.17.
Biboulet
, N.
, and Houpert
, L.
, 2010
, “Hydrodynamic Force and Moment in Pure Rolling Lubricated Contact: Part II: Point Contacts
,” J. Eng. Tribol.
, 224
(8), pp. 777
–787
.18.
Harris
, T.
, and Kotzalas
, M. N.
, 2007
, Advanced Concepts of Bearing Technology
, 4th ed., Vol. 2
, CRC Press
, Boca Raton, FL
, pp. 191
–208
.19.
Yovanovich
, M. M.
, 1998
, “Application of Thermal Contact Resistance Theory to Electronic Packages
,” Advances in Thermal Modeling of Electronic Components and Systems
, Vol. 1, A. D.
Kraus
, and A.
Bar-Choen
, eds., Hemisphere Publishing
, New York
, pp. 79
–128
.20.
Incropera
, F. P.
, and Dewitt
, D. P.
, 1985
, Introduction to Heat Transfer
. 3rd ed., Wiley
, Jefferson City, MO
.21.
Krieth
, R.
, 1968
, “Convection Heat Transfer in Rotating Systems
,” Advances in Heat Transfer
, Vol. 5
, Elsevier, pp. 128
–251
.22.
Zaretsky
, E. V.
, Singer
, H. R.
, and Bamberger
, E. N.
, 1974
, “Operating Characteristics of 120 mm Bore Ball Bearings at 3 × 106 DN
,” Report No. NASA TN D-7837.Copyright © 2015 by ASME
You do not currently have access to this content.