Friction tests with point–point contact were carried out using a microtribometer to investigate the tribological characteristics of steel/steel rubbing pair immersed in 57 kinds of esters as lubricant base oils. A set of 57 esters and their wear data were included in the back-propagation neural network (BPNN)-quantitative structure tribo-ability relationship (QSTR) model with two-dimensional (2D) and three-dimensional (3D) QSTR descriptors. The predictive performance of the BPNN-QSTR model is acceptable. The findings of the BPNN-QSTR model show that the extent of polar groups cannot be too large in the molecule to achieve good antiwear performance; and the polar groups with a high degree of relative concentrated charge are favorable for antiwear. A low degree of molecular hydrophobicity of lubricant base oil is beneficial for antiwear behavior. Large molecular dipole moment is disadvantageous for antiwear properties. It is necessary to maintain one large molecular surface in one plane, to have a long and short chain length to be present within the same molecule, and to keep small difference between the long and short chain length to enhance the antiwear performance. Finally, lubricant base oil candidate molecules will have beneficial antiwear properties that they should contain more N groups with three single bonds and more C groups with one double bond and two single bonds; the presence of O atoms with any bonds or CH groups with three single bonds leads to a decrease in the wear resistance performance.

References

References
1.
Mortier
,
R. M.
,
Fox
,
M. F.
, and
Orszulik
,
S. T.
, eds.,
2010
,
Chemistry and Technology of Lubricants
,
3rd ed.
,
Springer
, The Netherlands.
2.
Mang
,
T.
, and
Dresel
,
W.
,
2001
,
Lubricants and Lubrication
,
Wiley VCH
,
Weinheim, Germany
.
3.
Dai
,
K.
, and
Gao
,
X.
,
2013
, “
Estimating Antiwear Properties of Lubricant Additives Using a Quantitative Structure Tribo-Ability Relationship Model With Back Propagation Neural Network
,”
Wear
,
306
(
1–2
), pp.
242
247
.10.1016/j.wear.2012.11.045
4.
Gao
,
X.
,
Wang
,
Z.
,
Zhang
,
H.
, and
Dai
,
K.
,
2015
, “
A Three Dimensional Quantitative Structure–Tribological Relationship Model
,”
ASME J. Tribol.
(submitted).
5.
Gao
,
X.
,
Dai
,
K.
,
Wang
,
Z.
, and
Wang
,
T.
,
2015
, “
Application of Quantitative Structure Tribo-Ability Relationship Model With Bayesian Regularization Neural Network
,”
Friction
(submitted).
6.
Hansch
,
C.
, and
Steward
,
A. R.
,
1964
, “
The Use of Substituent Constants in the Analysis of the Structure–Activity Relationship in Penicillin Derivatives
,”
J. Med. Chem.
,
7
(
6
), pp.
691
694
.10.1021/jm00336a001
7.
Prasanna
,
S.
, and
Doerksen
,
R. J.
,
2009
, “
Topological Polar Surface Area: A Useful Descriptor in 2D-QSAR
,”
Curr. Med. Chem.
,
16
(
1
), pp.
21
41
.10.2174/092986709787002817
8.
Cramer
,
R. D.
, III
,
Patterson
,
D. E.
, and
Bunce
,
J. D.
,
1988
, “
Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins
,”
J. Am. Chem.
,
110
(
18
), pp.
5959
5967
.10.1021/ja00226a005
9.
Ferguson
,
A. M.
,
Heritage
,
T.
,
Jonathon
,
P.
,
Pack
,
S. E.
,
Phillips
,
L.
,
Rogan
,
J.
, and
Snaith
,
P. J.
,
1997
, “
EVA: A New Theoretically Based Molecular Descriptor for Use in QSAR/QSPR Analysis
,”
J. Comput. Aided Mol. Des.
,
11
(
2
), pp.
143
152
.10.1023/A:1008026308790
10.
Ginn
,
C. M. R.
,
Turner
,
D. B.
,
Willett
,
P.
,
Ferguson
,
A. M.
, and
Heritage
,
T. W.
,
1997
, “
Similarity Searching in Files of Three-Dimensional Chemical Structures: Evaluation of the EVA Descriptor and Combination of Rankings Using Data Fusion
,”
J. Chem. Inf. Modell.
,
37
(
1
), pp.
23
37
.10.1021/ci960466u
11.
Turner
,
D. B.
,
Willett
,
P.
,
Ferguson
,
A. M.
, and
Heritage
,
T.
,
1997
, “
Evaluation of a Novel Infra-Red Range Vibration-Based Descriptor (EVA) for QSAR Studies: 1. General Application
,”
J. Comput. Aided Mol. Des.
,
11
(
4
), pp.
409
422
.10.1023/A:1007988708826
12.
Heritage
,
T. W.
,
Ferguson
,
A. M.
,
Turner
,
D. B.
, and
Willett
,
P.
,
1998
, “
EVA: A Novel Theoretical Descriptor for QSAR Studies
,”
Perspect. Drug Discovery Des.
,
9–11
, pp.
381
398
.10.1023/A:1027236711155
13.
Venkataramani
,
P. S.
,
Kalra
,
S. L.
, and
Raman
,
S. V.
,
1989
, “
Synthesis, Evaluation and Applications of Complex Ester as Lubricants: A Base Study
,”
J. Synth. Lubr.
,
5
(
4
), pp.
271
289
.10.1002/jsl.3000050403
14.
Ponnekanti
,
N.
, and
Savita
,
K.
,
2012
, “
Development of Ecofriendly/Biodegradable Lubricants: An Overview
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
764
774
.10.1016/j.rser.2011.09.002
15.
Sommers
,
E. A.
, and
Crowell
,
T. L.
,
1953
, “
High Temperature Anti-Oxidants for Synthetic Oils: 3.The Thermal Decomposition of Di-(2-Ethylhexyl) Sebacate
,” Wright Air Development Center Technical Report, pp.
1
68
, Report No. 53–293.
16.
Barnes
,
R. S.
, and
Fainman
,
M. Z.
,
1957
, “
Synthetic Ester Lubricants
,”
Lubr. Eng.
, pp.
454
457
.
17.
Eychenne
,
V.
, and
Mouloungui
,
Z.
,
1998
, “
Relationships Between Structure and Lubricating Properties of Neopentylpolyol Esters
,”
Ind. Eng. Chem. Res.
,
37
(
12
), pp.
4835
4843
.10.1021/ie9801204
18.
Keenan
,
M. J.
,
Krevalis
,
M. A.
, and
David
,
W. T.
,
2001
, “
High Hydroxyl Content Glycerol Di-Esters
,” U.S. Patent No. 6,255,262.
19.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2010
,
Multilayer Neural Network Architecture, Neural Network ToolboxTM 7 User's Guide (matlab)
,
the MathWorks Inc.
,
Boston, MA
, pp.
3-3
3-4
.
20.
Bonchev
,
D.
,
Mekenyan
,
O.
, and
Trinajstic
,
N.
,
1981
, “
Isomer Discrimination by Topological Information Approach
,”
J. Comput. Chem.
,
2
(
2
), pp.
127
148
.10.1002/jcc.540020202
21.
Stanton
,
D. T.
, and
Jurs
,
P. C.
,
1990
, “
Development and Use of Charge Partial Surface Area Structural Descriptors in Computer-Assisted Quantitative Structure–Property Relationship Studies
,”
Anal. Chem.
,
62
(
21
), pp.
2323
2329
.10.1021/ac00220a013
22.
Zhang
,
J.
,
1999
, “
The Relationship Between Additives Molecular Structure and Their Tribological Properties and the Mechanism of Boundary Lubrication
,” Ph.D. thesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
You do not currently have access to this content.