This study focuses on the influence of roughness lay directionality on micropit crack formation, using a computational approach. A mixed lubrication model is implemented to find the surface tractions, which are used in a stress model to compute the near surface stress concentrations. With the stress amplitudes and means determined, the crack formation lives are assessed according to a fatigue criterion. It is found when the roughness lays of the two surface are parallel to the rolling direction and are out-of-phase, the resulted micropitting area percentage is minimum. The most severe micropitting activity is observed on the surface whose roughness lay is parallel to the rolling direction, while the roughness lay of its counterpart is normal to the rolling direction.

References

References
1.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
Micro-Pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,”
Int. J. Fatigue
,
48
, pp.
9
18
.10.1016/j.ijfatigue.2012.12.003
2.
Tokuda
,
M.
,
Nagafuchi
,
M.
,
Tsushima
,
N.
, and
Muro
,
H.
,
1982
, “
Observations of the Peeling Mode of Failure and Surface-originated Flaking from a Ring-to-Ring Rolling Contact Fatigue Test Rig
,” Rolling Contact Fatigue Testing of Bearing Steels,
ASTM Special Technical Publication, Vol.
771
, pp.
150
165
.
3.
Maeda
,
K.
,
Tsushima
,
N.
, and
Muro
,
H.
,
1980
, “
The Inclination of Cracking in the Peeling Failure of a Ball-Bearing Steel and Its Relation to the Inclination of the Principal Residual Stress
,”
Wear
,
65
(
2
), pp.
175
190
.10.1016/0043-1648(80)90020-4
4.
Cheng
,
W.
, and
Cheng
,
H. S.
,
1995
, “
Effect of Surface Roughness Orientation on Pitting Resistance of Lubricated Rollers
,”
Tribol. Trans.
,
38
(
2
), pp.
396
402
.10.1080/10402009508983420
5.
Webster
,
M. N.
, and
Norbart
,
C. J. J.
,
1995
, “
An Experimental Investigation of Micropitting Using a Roller Disk Machine
,”
Tribol. Trans.
,
38
(4), pp.
883
895
.10.1080/10402009508983485
6.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Assessment of the Factors Influencing Micropitting in Rolling/Sliding Contacts
,”
Wear
,
258
(
10
), pp.
1510
1524
.10.1016/j.wear.2004.10.012
7.
Morales-Espejel
,
G. E.
, and
Brizmer
,
V.
,
2011
, “
Micropitting Modeling in Rolling-Sliding Contacts: Application to Roller Bearings
,”
Tribol. Trans.
,
54
(4), pp.
625
643
.10.1080/10402004.2011.587633
8.
Winkelmann
,
L.
,
El-Saeed
,
O.
, and
Bell
,
M.
,
2009
, “
The Effect of Superfinishing on Gear Micropitting
,”
Gear Technol.
,
2
, pp.
60
65
.
9.
Holzhauer
,
W.
,
1991
, “
Surface Changes Around Large Raceway Indentations During Run-In of Tapered Roller-Bearings
,”
Tribol. Trans.
,
34
(
3
), pp.
361
368
.10.1080/10402009108982045
10.
Parker
,
R. J.
,
Signer
,
H. R.
, and
Pinel
,
S. I.
,
1982
, “
Endurance Tests With Large-Bore Tapered-Roller Bearings to 2.2 Million DN
,”
J. Lubr. Technol.
,
104
(
3
), pp.
293
299
.10.1115/1.3253198
11.
Ai
,
X. L.
, and
Nixon
,
H. P.
,
2000
, “
Fatigue Life Reduction of Roller Bearings Due to Debris Denting: Part II—Experimental Validation
,”
Tribol. Trans.
,
43
(
2
), pp.
311
317
.10.1080/10402000008982345
12.
Evans
,
H. P.
,
Snidle
,
R. W.
,
Sharif
,
K. J.
,
Shaw
,
B. A.
, and
Zhang
,
J.
,
2013
, “
Analysis of Micro-Elastohydrodynamic Lubrication and Prediction of Surface Fatigue Damage in Micropitting Tests on Helical Gears
,”
ASME J. Tribol.
,
135
(
3
), p.
011501
.10.1115/1.4007693
13.
Olver
,
A. V.
,
Tiew
,
L. K.
,
Medina
,
S.
, and
Choo
,
J. W.
,
2004
, “
Direct Observations of a Micropit in an Elastohydrodynamic Contact
,”
Wear
,
256
(
1–2
), pp.
168
175
.10.1016/S0043-1648(03)00374-0
14.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Phase Transformations Associated With Micropitting in Rolling/Sliding Contacts
,”
J. Mater. Sci.
,
40
(
18
), pp.
4767
4774
.10.1007/s10853-005-2017-5
15.
Oila
,
A.
,
Shaw
,
B. A.
,
Aylott
,
C. J.
, and
Bull
,
S. J.
,
2005
, “
Martensite Decay in Micropitted Gears
,”
Proc. Inst. Mech. Eng., Part J
,
219
(
2
), pp.
77
83
.10.1243/135065005X9790
16.
Ahlroos
,
T.
,
Ronkainen
,
H.
,
Helle
,
A.
,
Prikka
,
R.
,
Virta
,
J.
, and
Varjus
,
S.
,
2009
, “
Twin Disc Micropitting Tests
,”
Tribol. Int.
,
42
(10), pp.
1460
1466
.10.1016/j.triboint.2009.05.023
17.
Winter
,
H.
, and
Weiss
,
T.
,
1981
, “
Some Factors Influencing the Pitting, Micro-Pitting (Frosted Areas) and Slow Speed Wear of Surface Hardened Gears
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
499
505
.10.1115/1.3254945
18.
Brechot
,
P.
,
Cardis
,
A. B.
,
Murphy
,
W. R.
, and
Theissen
,
J.
,
2000
, “
Micropitting Resistant Industrial Gear Oils With Balanced Performance
,”
Ind. Lubr. Tribol.
,
52
(
3
), pp.
125
136
.10.1108/00368790010371762
19.
Lainé
,
E.
,
Olver
,
A. V.
, and
Beveridge
,
T. A.
,
2008
, “
Effect of Lubricants on Micropitting and Wear
,”
Tribol. Int.
,
41
(
11
), pp.
1049
1055
.10.1016/j.triboint.2008.03.016
20.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Physics-Based Model to Predict Micro-Pitting Lives of Lubricated Point Contacts
,”
Int. J. Fatigue
,
47
, pp.
205
215
.10.1016/j.ijfatigue.2012.09.002
21.
Li
,
S.
, and
Kahraman
,
A.
,
2014
, “
A Micro-Pitting Model for Spur Gear Contacts
,”
Int. J. Fatigue
,
59
, pp.
224
233
.10.1016/j.ijfatigue.2013.08.015
22.
Li
,
S.
, and
Kahraman
,
A.
,
2009
, “
A Mixed EHL Model With Asymmetric Integrated Control Volume Discretization
,”
Tribol. Int.
,
42
(
8
), pp.
1163
1172
.10.1016/j.triboint.2009.03.020
23.
Li
,
S.
,
2014
, “
A Boundary Element Model for Near Surface Contact Stresses of Rough Surfaces
,”
Comput. Mech.
,
54
(
3
), pp.
833
846
.10.1007/s00466-014-1037-x
24.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N.
, and
Wedeven
,
L. D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-on-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.10.1016/j.triboint.2012.11.007
25.
Li
,
S.
,
2013
, “
Influence of Surface Roughness Lay Directionality on Scuffing Failure of Lubricated point Contacts
,”
ASME J. Tribol.
,
135
(
4
), p.
041502
.10.1115/1.4024783
26.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
.10.1016/j.ijfatigue.2010.09.021
27.
Li
,
S.
,
Kahraman
,
A.
, and
Klein
,
M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
.10.1115/1.4005655
28.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
(3), pp.
493
500
.10.1115/1.2833525
29.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.10.1016/S0043-1648(99)00113-1
30.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.10.1115/1.1467920
31.
Martini
,
A.
,
Escoffier
,
B.
,
Wang
,
Q.
,
Liu
,
S. B.
,
Keer
,
L. M.
,
Zhu
,
D.
, and
Bujold
,
M.
,
2006
, “
Prediction of Subsurface Stress in Elastic Perfectly Plastic Rough Components
,”
Tribol. Lett.
,
23
(
3
), pp.
243
251
.10.1007/s11249-006-9062-3
32.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Method to Derive Friction and Rolling Power Loss Formulae for Mixed Elastohydrodynamic Lubrication
,”
J. Adv. Mech. Des., Syst., Manuf.
,
5
(
4
), pp.
252
263
10.1299/jamdsm.5.252
You do not currently have access to this content.