A rigid sphere approaching a lubricated flat surface with a layer of elastic coating on the elastic substrate is explored under constant load conditions. The transient pressure profiles, film shapes, elastic deformation, von Mises stress (σvon) during the pure squeeze process under various operating conditions in the elastohydrodynamic lubrication (EHL) regime are discussed. The simulation results reveal that the greater the Young's modulus of coating is, the greater the pressure distribution is, the smaller the contact area is, and the greater the maximum stress (σvon) value is. As the Young’s modulus of coating decreases, the central elastic deformation at the surface (Z = 0) increases and the deformation at the interface of coating/substrate (Z = −1) decreases. For hard coating cases, the maximum central pressure increases to an asymptotic value and minimum film thickness decreases to an asymptotic value as the coating thickness increases. For soft coating cases, this phenomenon reverses. A thicker and stiffer coating leads to a higher maximum stress. At the deformation recovery stage, the positions of the maximum stress would begin to offset downwards and closer to the coating/substrate interface. Moreover, the position of maximum stress varies from the coating to the subsurface as the Young’s modulus of coating increases. The EHL with stress analysis can prevent the chance of fracture in coating or substrate. These characteristics are important for the lubrication design of mechanical elements with coatings.

References

References
1.
Elsharkawy
,
A.
, and
Hamrock
,
B.
,
1995
, “
Elastohydrodynamic Lubrication of Elastomeric-Coated Surfaces in Line Contact
,”
Proc. Inst. Mech. Eng., Part J
,
209
(
2
), pp.
119
130
.10.1243/PIME_PROC_1995_209_414_02
2.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
, Chap. V.
3.
Jaffar
,
M. J.
,
2008
, “
On the Frictionless Axi-Symmetric Contact of a Thick Elastic Layer and the Associated Squeeze Film Problem
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
1
), pp.
61
68
.10.1243/13506501JET372
4.
Jin
,
Z.
,
2000
, “
Elastohydrodynamic Lubrication of a Circular Point Contact for a Compliant Layered Surface Bonded to a Rigid Substrate Part 1: Theoretical Formulation and Numerical Method
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
3
), pp.
267
279
.10.1243/1350650001543160
5.
Liu
,
Y.
,
Chen
,
W. W.
,
Zhu
,
D.
,
Liu
,
S.
, and
Wang
,
Q. J.
,
2007
, “
An Elastohydrodynamic Lubrication Model for Coated Surfaces in Point Contacts
,”
ASME J. Tribol.
,
129
(
3
), pp.
509
516
.10.1115/1.2736433
6.
Fujino
,
T.
,
Iwamoto
,
K.
,
Tanaka
,
K.
, and
Shima
,
M.
,
2007
, “
Stress Distribution of Coated Film With a Range of Coated Film Thickness and Elastic Properties Under a Single EHL Operating Condition
,”
Tribol. Int.
,
40
, pp.
1638
1648
.10.1016/j.triboint.2007.02.012
7.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.10.1115/1.2842246
8.
Tan
,
X.
,
Goodyer
,
C. E.
,
Jimack
,
P. K.
,
Taylor
,
R. I.
, and
Walkley
,
M. A.
,
2012
, “
Computational Approaches for Modelling Elastohydrodynamic Lubrication Using Multiphysics Software
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
6
), pp.
463
480
.10.1177/1350650111428028
9.
Fujino
,
T.
,
Iwamoto
,
K.
,
Akuzawa
,
N.
, and
Tanaka
,
K.
,
2009
, “
Stress Distribution of a Coated Film With an Interlayer Under Elastohydrodynamic Lubrication Conditions
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
3
), pp.
553
562
.10.1243/13506501JET534
10.
Christensen
,
H.
,
1970
, “
Elastohydrodynamic Theory of Spherical Bodies in Normal Approach
,”
ASME J. Lubr. Technol.
,
92
(
1
), pp.
145
153
.10.1115/1.3451305
11.
Lee
,
K. M.
, and
Cheng
,
H. S.
,
1973
, “
The Pressure and Deformation Profiles Between Two Normally Approaching Lubricated Cylinders
,”
ASME J. Lubr. Technol.
,
95
(
3
), pp.
308
317
.10.1115/1.3451813
12.
Yang
,
P. R.
, and
Wen
,
S. Z.
,
1991
, “
Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 1: Theory and Dynamic Load Results
,”
Wear
,
142
(
1
), pp.
1
16
.10.1016/0043-1648(91)90148-N
13.
Yang
,
P. R.
, and
Wen
,
S. Z.
,
1991
, “
Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 2: Constant Speed and Constant Load Results
,”
Wear
,
142
(
1
), pp.
17
30
.10.1016/0043-1648(91)90149-O
14.
Chang
,
L.
,
1996
, “
An Efficient Calculation of the Load and Coefficient of Restitution of Impact Between Two Elastic Bodies With a Liquid Lubricant
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
347
352
.10.1115/1.2788871
15.
Song
,
H.
,
Yang
,
P. R.
, and
Cui
,
J.
,
2007
, “
Analysis on the Elastohydrodynamic Lubrication in Elliptical Contacts for a Sudden Stop Process
,”
Lubr. Eng.
,
32
(
2
), pp.
55
59
.10.3969/j.issn.0254-0150.2011.05.002
16.
Paul
,
G. R.
, and
Cameron
,
A.
,
1972
, “
An Absolute High-Pressure Microviscometer Based on Refractive Index
,”
Proc. R. Soc. London, Ser. A
,
331
(
1585
), pp.
171
184
.10.1098/rspa.1972.0170
17.
Wong
,
P. L.
,
Lingard
,
S.
, and
Camerson
,
A.
,
1992
, “
The High Pressure Impact Microviscometer
,”
STLE Tribol. Trans.
,
35
(
3
), pp.
500
508
.10.1080/10402009208982148
18.
Wong
,
P. L.
,
Lingard
,
S.
, and
Cameron
,
A.
,
1992
, “
A Simplified Impact Microviscometer
,”
Trib. Int.
,
25
(
6
), pp.
363
366
.10.1016/0301-679X(92)90072-U
19.
Safa
,
M. M. A.
, and
Gohar
,
R.
,
1986
, “
Pressure Distribution Under a Ball Impacting a Thin Lubricant Layer
,”
ASME J. Tribol.
,
108
(
1
), pp.
372
376
.10.1115/1.3261207
20.
Dowson
,
D.
, and
Wang
,
D.
,
1994
, “
An Analysis of the Normal Bouncing of a Solid Elastic Ball on an Oily Plate
,”
Wear
,
179
(
1–2
), pp.
29
37
.10.1016/0043-1648(94)90215-1
21.
Larsson
,
R.
, and
Högund
,
E.
,
1995
, “
Numerical Simulation of a Ball Impacting and Rebounding a Lubricated Surface
,”
ASME J. Tribol.
,
117
(
1
), pp.
94
102
.10.1115/1.2830614
22.
Chu
,
H. M.
,
Li
,
W. L.
, and
Chen
,
M. Da.
,
2006
, “
Elastohydrodynamic Lubrication of Circular Contacts at Pure Squeeze Motion With Non-Newtonian Lubricants
,”
Tribol. Int.
,
39
(
9
), pp.
897
905
.10.1016/j.triboint.2005.08.002
23.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Watermann
,
H. I.
,
1963
, “
The Viscosity Temperature Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
.10.1115/1.3656919
24.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication
,
Pergamon, Oxford
,
UK
, pp.
88
92
.
25.
Lee
,
R. T.
, and
Hamrock
,
B. J.
,
1989
, “
Squeeze and Entraining Motion in Nonconformal Line Contacts. Part II-Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
111
(
1
), pp.
8
16
.10.1115/1.3261884
You do not currently have access to this content.