Nonmetallic inclusions such as sulfides and oxides are byproducts of the steel manufacturing process. For more than half a century, researchers have observed microstructural alterations around the inclusions commonly referred to as “butterfly wings.” This paper proposes a model to describe butterfly wing formation around nonmetallic inclusions. A 2D finite element model is developed to obtain the stress distribution in a domain subject to Hertzian loading with an embedded nonmetallic inclusion. It was found that mean stress due to surface traction has a significant effect on butterfly formation. Continuum damage mechanics (CDM) was used to investigate fatigue damage and replicate the observed butterfly wing formations. It is postulated that cyclic damage accumulation can be the reason for the microstructural changes in butterflies. A new damage evolution equation, which accounts for the effect of mean stresses, was introduced to capture the microstructural changes in the material. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly sides. The proposed model is capable of predicting the regions of interest in corroboration with experimental observations.

References

References
1.
Jalalahmadi
,
B.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2011
, “
Material Inclusion Factors for Lundberg-Palmgren–Based RCF Life Equations
,”
Tribol. Trans.
,
54
(
3
), pp.
457
469
.10.1080/10402004.2011.560412
2.
Takemura
,
H.
,
2001
, “
Development of New Life Equation for Ball and Roller Bearings
,” SAE Paper No. 2000-11-2601, pp.
2117
2118
.
3.
Kerrigan
,
A.
,
Jc
,
K.
,
Gabelli
,
A.
, and
Ioannides
,
E.
,
2013
, “
Cleanliness of Bearing Steels and Fatigue Life of Rolling
,”
ASTM
International,
3
(
6
), pp.
2
7
.10.1520/JAI14040
4.
Schlicht
,
H.
,
Schreiber
,
E.
, and
Zwirlein
,
O.
,
1988
, “
Effects of Material Properties on Bearing Steel Fatigue Strength
,”
Effect of Steel Manufacturing Processes on the Quality of Bearing Steels
,
J. J. C.
Hoo
, ed.,
American Society for Testing and Materials
,
Philadelphia
, PA, ASTM STP 987, pp.
81
101
.
5.
Tricot
,
R.
,
Monnot
,
J.
, and
Lluansi
,
M.
,
1972
, “
How Microstructural Alterations Affect Fatigue Properties of 52100 Steel
,” Met. Eng. Q,
12.2
, pp.
39
47
.
6.
Styri
,
H.
,
1951
, “
Fatigue Strength of Ball Bearings Races and Heat-Treated 52100 Steel Specimens
,”
Proceedings of the American Society for Testing and Materials
, Vol.
51
, pp.
682
700
.
7.
Niu
,
L. J.
,
Velay
,
X.
, and
Sheppard
,
T.
,
2012
, “
On Material Flow and Aspects of Structural Modification During Direct and Indirect Extrusion of Aluminium Alloy
,”
Mater. Sci. Technol.
,
28
(
4
), pp.
397
405
.10.1179/1743284711Y.0000000059
8.
Evans
,
M.-H.
,
2012
, “
White Structure Flaking (WSF) in Wind Turbine Gearbox Bearings: Effects of ‘Butterflies' and White Etching Cracks (WECs)
,”
Mater. Sci. Technol.
,
28
(
1
), pp.
3
22
.10.1179/026708311X13135950699254
9.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.10.1016/j.pmatsci.2011.06.002
10.
Becker
,
P. C.
,
1981
, “
Microstructural Changes Around Non-Metallic Inclusions Caused by Rolling-Contact Fatigue of Ball-Bearing Steels
,”
Met. Technol.
,
8
(
1
), pp.
234
243
.10.1179/030716981803275415
11.
Tricot
,
R.
,
Monnot
,
J.
, and
Lluansi
,
M.
,
1972
, “
How Microstructural Alterations Affect Fatigue Properties of 52100 Steel
,”
Met. Eng. Q.
,
12.2
, pp.
39
47
.
12.
Evans
,
M.-H.
,
Walker
,
J. C.
,
Ma
,
C.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2013
, “
A FIB/TEM Study of Butterfly Crack Formation and White Etching Area (WEA) Microstructural Changes Under Rolling Contact Fatigue in 100Cr6 Bearing Steel
,”
Mater. Sci. Eng., A
,
570
, pp.
127
134
.10.1016/j.msea.2013.02.004
13.
Grabulov
,
A.
, and
Zandbergen
,
H. W.
,
2007
, “
TEM and Dual Beam (SEM/FIB) Investigations of Subsurface Cracks and White Etching Area (WEA) Formed in a Deep Groove Ball Bearing Caused by Rolling Contact Fatigue (RCF)
,”
Proceedings of VHCF-4 Conference
.
14.
Grabulov
,
A.
,
Ziese
,
U.
, and
Zandbergen
,
H. W.
,
2007
, “
TEM/SEM Investigation of Microstructural Changes Within the White Etching Area Under Rolling Contact Fatigue and 3-D Crack Reconstruction by Focused Ion Beam
,”
Scr. Mater.
,
57
(
7
), pp.
635
638
.10.1016/j.scriptamat.2007.06.024
15.
Errichello
,
R.
,
Budny
,
R.
, and
Eckert
,
R.
,
2013
, “
Investigations of Bearing Failures Associated With White Etching Areas (WEAs) in Wind Turbine Gearboxes
,”
Tribol. Trans.
,
56
(
6
), pp.
1069
1076
.10.1080/10402004.2013.823531
16.
Evans
,
M.-H.
,
Richardson
,
A. D.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2013
, “
Effect of Hydrogen on Butterfly and White Etching Crack (WEC) Formation Under Rolling Contact Fatigue (RCF)
,”
Wear
,
306
(
1–2
), pp.
1
16
.10.1016/j.wear.2013.03.008
17.
Oila
,
A.
,
Shaw
,
B. A.
,
Aylott
,
C. J.
, and
Bull
,
S. J.
,
2005
, “
Martensite Decay in Micropitted Gears
,”
Proc. Inst. Mech. Eng., Part J
,
219
(
2
), pp.
77
83
.10.1243/135065005X9790
18.
Sharma
,
V.
,
1984
, “
Roller Contact Fatigue Study of Austempered Ductile Iron
,”
Journal of Heat Treating
,
3
(
4
), pp.
326
334
.
19.
Loy
,
B.
, and
McCallum
,
R.
,
1973
, “
Mode of Formation of Spherical Particles in Rolling Contact Fatigue
,”
Wear
,
24
(
2
), pp.
219
228
.10.1016/0043-1648(73)90234-2
20.
Grad
,
P.
,
Reuscher
,
B.
,
Brodyanski
,
A.
,
Kopnarski
,
M.
, and
Kerscher
,
E.
,
2012
, “
Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels
,”
Scr. Mater.
,
67
(
10
), pp.
838
841
.10.1016/j.scriptamat.2012.07.049
21.
Kang
,
J.-H.
,
Hosseinkhani
,
B.
,
Williams
,
C. A.
,
Moody
,
M. P.
,
Bagot
,
P. A. J.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2013
, “
Solute Redistribution in the Nanocrystalline Structure Formed in Bearing Steels
,”
Scr. Mater.
,
69
(
8
), pp.
630
633
.10.1016/j.scriptamat.2013.07.017
22.
O'Brien
,
J.
, and
King
,
A.
,
1966
, “
Electron Microscopy of Stress-Induced Structural Alterations Near Inclusions in Bearing Steels
,”
ASME J. Fluids Eng.
,
88
(
3
), pp.
568
571
.
23.
Polonsky
,
I.
, and
Keer
,
L.
,
1995
, “
On White Etching Band Formation Bearings
,”
J. Mech. Phys. Solids
,
43
(
4
), pp.
637
669
.10.1016/0022-5096(95)00001-Y
24.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Phase Transformations Associated With Micropitting in Rolling/Sliding Contacts
,”
J. Mater. Sci.
,
40
(
18
), pp.
4767
4774
.10.1007/s10853-005-2017-5
25.
Glaeser
,
W.
, and
Shaffer
,
S.
, 1996, “
Contact Fatigue
,”
Fatigue Fract, ASM Handbook Volume 19: Fatigue and Fracture
,
ASM International
, pp.
331
336
.
26.
Sauger
,
E.
,
Fouvry
,
S.
,
Ponsonnet
,
L.
,
Kapsa
,
P.
,
Martin
,
J.
, and
Vincent
,
L.
,
2000
, “
Tribologically Transformed Structure in Fretting
,”
Wear
,
245
(
1–2
), pp.
39
52
.10.1016/S0043-1648(00)00464-6
27.
Lewis
,
M.
, and
Tomkins
,
B.
,
2012
, “
A Fracture Mechanics Interpretation of Rolling Bearing Fatigue
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
5
), pp.
389
405
.10.1177/1350650111435580
28.
Grabulov
,
A.
, 2010, “
Fundamentals of Rolling Contact Fatigue
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
29.
Umezawa
,
O.
, “
Modeling of Crack Generation and Growth Under Rolling Contact Fatigue in Martensite Steels
,”
Processing and Fabrication of Advanced Materials XVIII
, pp.
555
564
.
30.
Evans
,
M.-H.
,
Wang
,
L.
,
Jones
,
H.
, and
Wood
,
R. J. K.
,
2013
, “
White Etching Crack (WEC) Investigation by Serial Sectioning, Focused Ion Beam and 3-D Crack Modelling
,”
Tribol. Int.
,
65
(
2
), pp.
146
160
.10.1016/j.triboint.2013.03.022
31.
Grabulov
,
A.
,
Petrov
,
R.
, and
Zandbergen
,
H. W.
,
2010
, “
EBSD Investigation of the Crack Initiation and TEM/FIB Analyses of the Microstructural Changes Around The Cracks Formed Under Rolling Contact Fatigue (RCF)
,”
Int. J. Fatigue
,
32
(
3
), pp.
576
583
.10.1016/j.triboint.2013.03.022
32.
Stiénon
,
A.
,
Fazekas
,
A.
,
Buffière
,
J.-Y.
,
Vincent
,
A.
,
Daguier
,
P.
, and
Merchi
,
F.
,
2009
, “
A New Methodology Based on X-Ray Micro-Tomography to Estimate Stress Concentrations Around Inclusions in High Strength Steels
,”
Mater. Sci. Eng., A
,
513
, pp.
376
383
.10.1016/j.ijfatigue.2009.07.002
33.
Guy
,
P.
, and
Meynaud
,
P.
,
1997
, “
Sub-Surface Damage Investigation by High Ultrasonic Echography Aring Steel Frequency on l00Cr6
,”
Tribol. Int.
,
30
(
4
), pp.
247
259
.10.1016/S0301-679X(96)00041-2
34.
Alley
,
E. S.
, and
Neu
,
R. W.
,
2010
, “
Microstructure-Sensitive Modeling of Rolling Contact Fatigue
,”
Int. J. Fatigue
,
32
(
5
), pp.
841
850
.10.1016/j.ijfatigue.2009.07.012
35.
Vincent
,
A.
,
Lormand
,
G. I.
,
Lamagnbre
,
P.
,
Gosset
,
L.
,
Girodin
,
D.
,
Dudragne
,
G.
, and
Fougres
,
R.
,
1998
, “
From White Etching Areas around Inclusions to Crack Nucleation in Bearing Steels Under Rolling Contact Fatigue
,”
Bearing Steels: Into the 21st Century
,
J. J. C.
Hoo
, and
W. B.
Green
, eds.,
American Society for Testing and Materials
, ASTM STP 1327.
36.
Melander
,
A.
,
1998
, “
Simulation of the Behaviour of Short Cracks at Inclusions Under Rolling Contact Fatigue Loading-Specially the Effect of Plasticity
,”
Bearing Steels: Into the 21st Century
,
J. J. C.
Hoe
, and
W. B.
Green
, eds.,
American Society for Testing and Materials
, ASTM STP 1327.
37.
Melander
,
A.
,
1997
, “
A Finite Element Study of Short Crack With Different Inclusion Types Under Rolling Contact Fatigue Load
,”
Int. J. Fatigue
,
19
(
1
), pp.
13
24
.10.1016/S0142-1123(96)00045-X
38.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1999
, “
A Model for Rolling Contact Failure
,”
Wear
,
224
(
1
), pp.
38
49
.10.1016/S0043-1648(98)00311-1
39.
Lemaître
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin, Germany
.
40.
Xiao
,
Y.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.10.1016/S0142-1123(98)00005-X
41.
Bomidi
,
J. A. R.
,
2013
, “
Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel
,”
ASME J. Tribol.
,
135
(
3
), p.
031103
.10.1115/1.4023807
42.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.10.1080/10402004.2012.754072
43.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Wang
,
C.-P.
, and
Sadeghi
,
F.
,
2012
, “
Experimental and Numerical Investigation of Fatigue of Thin Tensile Specimen
,”
Int. J. Fatigue
,
44
(3), pp.
116
130
.10.1016/j.ijfatigue.2012.05.013
44.
Bolotin
,
V. V.
, and
Belousov
,
I. L.
,
2001
, “
Early Fatigue Crack Growth as the Damage Accumulation Process
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
279
287
.10.1016/S0266-8920(01)00020-0
45.
Evans
,
M.-H.
,
Richardson
,
A. D.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2013
, “
Serial Sectioning Investigation of Butterfly and White Etching Crack (WEC) Formation in Wind Turbine Gearbox Bearings
,”
Wear
,
302
(
1–2
), pp.
1573
1582
.10.1016/j.wear.2012.12.031
46.
Lund
,
T. B.
,
Beswick
,
J.
, and
Dean
,
S. W.
,
2010
, “
Sub-Surface Initiated Rolling Contact Fatigue—Influence of Non-Metallic Inclusions, Processing History, and Operating Conditions
,”
J. ASTM Int.
,
7
(
5
), p.
102559
.10.1520/JAI102559
47.
Lund
,
T. B.
,
2012
, “
Sub-Surface Initiated Rolling Contact Fatigue—Influence of Non-Metallic Inclusions, Processing History, and Operating Conditions
,”
J. ASTM Int.
,
7
(
5
), p. 12.10.1520/JAI102559
48.
Huwaldt
,
J. A.
,
2013
, “PlotDigitizer”, Available: http://plotdigitizer.sourceforge.net/, Accessed May 6.
49.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (P-S-N) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
50
(
6
), pp.
807
816
.10.1080/10402000903125345
50.
Melander
,
A.
, and
Ölund
,
P.
,
1999
, “
Detrimental Effect of Nitride and Aluminium Oxide Inclusions on Fatigue Life in Rotating Bending of Bearing Steels
,”
Mater. Sci. Technol.
,
15
(
5
), pp.
555
562
.10.1179/026708399101506094
You do not currently have access to this content.