In this study, a new expression for the permanent deformation after the impact of a rod with a flat surface is given. Both flat and the surface have been considered elastoplastic. The contact has been considered frictionless and has been divided into three phases, the elastic, the elastoplastic, and the unloading phase. For the normal impact force in the loading phase, we considered a nonlinear expression that satisfies the effect of deformation on both objects by using a finite element model. For the unloading phase, the contact force has been considered to follow the Hertz theory. The simulation and experimental results were conducted for different initial impact velocities of the rod. Permanent deformation after the impact and the motion of the rod has been measured accurately in the experiments. Based on the simulation and experimental results an expression for the permanent deformation has been developed. Finally, the model has been verified and compared with previous contact models in terms of the coefficient of restitution.

References

References
1.
Hertz
,
C.
,
1882
, “
Üher die Berührung Fester Elastischer Körper (On the Contact of Elastic Solids)
,”
J. Reine Andegwandte Math.
,
92
, pp.
156
171
.
2.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, MA
, pp.
154
179
.
3.
Tabor
,
D.
,
1948
, “
A Simple Theory of Static and Dynamic Hardness
,”
Proc. R. Soc. Lond. Ser. A
,
192
(
1029
), pp.
247
274
.10.1098/rspa.1948.0008
4.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Clarendon Press
,
Oxford, UK
.
5.
Stronge
,
W. J.
,
1990
, “
Rigid Body Collisions With Friction
,”
Proc. R. Soc. Lond. Ser. A
,
431
(
1881
), pp.
169
181
.10.1098/rspa.1990.0125
6.
Stronge
,
W.
,
1991
, “
Unraveling Paradoxical Theories for Rigid Body Collisions
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
681
682
.10.1115/1.2893780
7.
Stronge
,
W.
,
1991
, “
Unraveling Paradoxical Theories for Rigid Body Collisions
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
1049
1055
.10.1115/1.2897681
8.
Chang
,
W.-R.
, and
Ling
,
F. F.
,
1992
, “
Normal Impact Model of Rough Surfaces
,”
ASME J. Tribol.
,
114
(
3
), pp.
439
447
.10.1115/1.2920903
9.
Stronge
,
W.
,
1995
, “
Theoretical Coefficient of Restitution for Planar Impact of Rough Elasto-Plastic Bodies
,”
Impact, Waves, and Fracture
, ASME AMD-205, pp.
351
362
.
10.
Thornton
,
C.
, and
Ning
,
Z.
,
1994
, “
Oblique Impact of Elasto-Plastic Spheres
,”
Proceedings of the First International Particle Technology Forum
, AIChE Publications, Vol. 2, pp.
14
19
.
11.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.10.1115/1.2787319
12.
Mesarovic
,
S. D.
, and
Johnson
,
K.
,
2000
, “
Adhesive Contact of Elastic–Plastic Spheres
,”
J. Mech. Phys. Solids
,
48
(
10
), pp.
2009
2033
.10.1016/S0022-5096(00)00004-1
13.
Kharaz
,
A.
,
Gorham
,
D.
, and
Salman
,
A.
,
1999
, “
Accurate Measurement of Particle Impact Parameters
,”
Meas. Sci. Technol.
,
10
(
1
), pp.
31
35
.10.1088/0957-0233/10/1/009
14.
Kharaz
,
A.
, and
Gorham
,
D.
,
2000
, “
A Study of the Recitation Coefficient in Elastic–Plastic Impact
,”
Philos. Mag. Lett.
,
80
(
8
), pp.
549
559
.10.1080/09500830050110486
15.
Li
,
L.
,
Wu
,
C.
, and
Thornton
,
C.
,
2002
, “
A Theoretical Model for the Contact of Elastoplastic Bodies
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
4
), pp.
421
431
.10.1243/0954406021525214
16.
Wu
,
C.-Y.
,
Li
,
L.-Y.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic–Plastic Spheres
,”
Int. J. Impact Engineering
,
32
(
1
), pp.
593
604
.10.1016/j.ijimpeng.2005.08.007
17.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic–Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.10.1115/1.1490373
18.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
,
2005
, “
Unloading of an Elastic–Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.10.1016/j.ijsolstr.2004.12.006
19.
Shankar
,
S.
, and
Mayuram
,
M.
,
2008
, “
Effect of Strain Hardening in Elastic–Plastic Transition Behavior in a Hemisphere in Contact With a Rigid Flat
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
3009
3020
.10.1016/j.ijsolstr.2008.01.017
20.
Kogut
,
L.
, and
Komvopoulos
,
K.
,
2004
, “
Analysis of the Spherical Indentation Cycle for Elastic–Perfectly Plastic Solids
,”
J. Mater. Res.
,
19
(
12
), pp.
3641
3653
.10.1557/JMR.2004.0468
21.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
22.
Johnson
,
K.
,
1968
, “
Experimental Determination of the Contact Stresses Between Plastically Deformed Cylinders and Spheres
,”
Engineering Plasticity
,
Cambridge University
,
Cambridge, MA
, pp.
341
361
.
23.
Jackson
,
R.
,
Chusoipin
,
I.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts
,”
ASME J. Tribol.
,
127
(
3
), pp.
484
493
.10.1115/1.1843166
24.
Jackson
,
R. L.
,
Green
,
I.
, and
Marghitu
,
D. B.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
(
3
), pp.
217
229
.10.1007/s11071-009-9591-z
25.
Marghitu
,
D. B.
,
Cojocaru
,
D.
, and
Jackson
,
R. L.
,
2011
, “
Elasto-Plastic Impact of a Rotating Link With a Massive Surface
,”
Int. J. Mech. Sci.
,
53
(
4
), pp.
309
315
.10.1016/j.ijmecsci.2011.01.012
26.
Brake
,
M.
,
2012
, “
An Analytical Elastic-Perfectly Plastic Contact Model
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3129
3141
.10.1016/j.ijsolstr.2012.06.013
You do not currently have access to this content.