Specific mechanisms underlying the critical velocity in cold gas particle spray applications are still being discussed, mainly due to limited access to in situ experimental observation and the complexity of modeling the particle impact process. In this work, particle bonding in the cold spray (CS) process was investigated by the finite element (FE) method. An effective interfacial cohesive strength parameter was defined in the particle–substrate contact regions. Impact of four different metals was simulated, using a range of impact velocities and varying the effective cohesive strength values. Deformation patterns of the particle and the substrate were characterized. It was shown that the use of interfacial cohesive strength leads to a critical particle impact velocity that demarcates a boundary between rebounding and bonding type responses of the system. Such critical bonding velocities were predicted for different interfacial cohesive strength values, suggesting that the bonding strength in particle–substrate interfaces could span a range that depends on the surface conditions of the particle and the substrate. It was also predicted that the quality of the particle bonding could be increased if the impact velocity exceeds the critical velocity. A method to predict a lower bound for the interfacial bonding energy was also presented. It was shown that the interfacial bonding energy for the different materials considered would have to be at least on the order of 10–60 J/m2 for cohesion to take place. The general methodology presented in this work can be extended to investigate various materials and impact conditions.

References

References
1.
Alkhimov
,
A. P.
,
Papyrin
,
A. N.
,
Kosarev
,
V. F.
,
Nestorovich
,
N. I.
, and
Shuspanov
,
M. M.
,
1994
, “
Gas Dynamic Spraying Method for Applying a Coating
,” U.S. Patent No. US5302414.
2.
Tokarev
,
A. O.
,
1996
, “
Structure of Aluminum Powder Coatings Prepared by Cold Gas Dynamic Spraying
,”
Metal Sci. Heat Treat.
,
38
(
3–4
), pp.
136
139
.10.1007/BF01401446
3.
Spencer
,
K.
, and
Zhang
,
M. X.
,
2008
, “
The Emergence of Cold Spray as a Tool for Surface Modification
,”
Key Eng. Mater.
,
384
, pp.
61
74
.10.4028/www.scientific.net/KEM.384.61
4.
Dykhuizen
,
R. C.
,
Smith
,
M. F.
,
Gilmore
,
D. L.
,
Neiser
,
R. A.
,
Jiang
,
X.
, and
Sampath
,
S.
,
1999
, “
Impact of High Velocity Cold Spray Particles
,”
J. Therm. Spray Technol.
,
8
(
4
), pp.
559
564
.10.1361/105996399770350250
5.
Assadi
,
H.
,
Gartner
,
F.
,
Stoltenhoff
,
T.
, and
Kreye
,
H.
,
2003
, “
Bonding Mechanism in Cold Gas Spraying
,”
Acta Mater.
,
51
(
15
), pp.
4379
4394
.10.1016/S1359-6454(03)00274-X
6.
Schmidt
,
T.
,
Gartner
,
F.
,
Assadi
,
H.
, and
Kreye
,
H.
,
2006
, “
Development of a Generalized Parameter Window for Cold Spray Deposition
,”
Acta Mater.
,
54
(
3
), pp.
729
742
.10.1016/j.actamat.2005.10.005
7.
Grujicic
,
M.
,
Zhao
,
C. L.
,
DeRosset
,
W. S.
, and
Helfritch
,
D.
,
2004
, “
Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process
,”
Mater. Des.
,
25
(
8
), pp.
681
688
.10.1016/j.matdes.2004.03.008
8.
Barradas
,
S.
,
Guipont
,
V.
,
Molins
,
R.
,
Jeandin
,
M.
,
Arrigoni
,
M.
,
Boustie
,
M.
,
Bolis
,
C.
,
Berthe
,
L.
, and
Ducos
,
M.
,
2007
, “
Laser Shock Flier Impact Simulation of Particle–Substrate Interactions in Cold Spray
,”
J. Therm. Spray Technol.
,
16
(
4
), pp.
548
556
.10.1007/s11666-007-9069-9
9.
Guetta
,
S.
,
Berger
,
M. H.
,
Borit
,
F.
,
Guipont
,
V.
,
Jeandin
,
M.
,
Boustie
,
M.
,
Ichikawa
,
Y.
,
Sakaguchi
,
K.
, and
Ogawa
,
K.
,
2009
, “
Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats
,”
J. Therm. Spray Technol.
,
18
(
3
), pp.
331
342
.10.1007/s11666-009-9327-0
10.
Grujicic
,
M.
,
Saylor
,
J. R.
,
Beasley
,
D. E.
,
DeRosset
,
W. S.
, and
Helfritch
,
D.
,
2003
, “
Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process
,”
Appl. Surf. Sci.
,
219
(
3–4
), pp.
211
227
.10.1016/S0169-4332(03)00643-3
11.
Hussain
,
T.
,
McCartney
,
D. G.
,
Shipway
,
P. H.
, and
Zhang
,
D.
,
2009
, “
Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components
,”
J. Therm. Spray Technol.
,
18
(
3
), pp.
364
379
.10.1007/s11666-009-9298-1
12.
Yokoyama
,
K.
,
Watanabe
,
M.
,
Kuroda
,
S.
,
Gotoh
,
Y.
,
Schmidt
,
T.
, and
Gartner
,
F.
,
2006
, “
Simulation of Solid Particle Impact Behavior for Spray Processes
,”
Mater. Trans.
,
47
(
7
), pp.
1697
1702
.10.2320/matertrans.47.1697
13.
Bae
,
G.
,
Xiong
,
Y.
,
Kumar
,
S.
,
Kang
,
K.
, and
Lee
,
C.
,
2008
, “
General Aspects of Interface Bonding in Kinetic Sprayed Coatings
,”
Acta Mater.
,
56
(
17
), pp.
4858
4868
.10.1016/j.actamat.2008.06.003
14.
Zhang
,
X.
,
Wang
,
X.
,
Li
,
Y.
, and
Chen
,
G.
,
2006
, “
Numerical Investigations on Effects of Impact Velocity and Spray Angle of Particle on Its Deformation Behavior in Cold Spraying
,”
Surf. Rev. Lett.
,
13
(
5
), pp.
613
620
.10.1142/S0218625X06008578
15.
Li
,
G.
,
Wang
,
X.-F.
, and
Li
,
W.-Y.
,
2007
, “
Effect of Different Incidence Angles on Bonding Performance in Cold Spraying
,”
Trans. Nonferrous Metals Soc. China (Engl. Ed.)
,
17
(
1
), pp.
116
121
.10.1016/S1003-6326(07)60058-2
16.
Li
,
W.-Y.
,
Yin
,
S.
, and
Wang
,
X.-F.
,
2010
, “
Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method
,”
Appl. Surf. Sci.
,
256
(
12
), pp.
3725
3734
.10.1016/j.apsusc.2010.01.014
17.
Li
,
W.-Y.
,
Liao
,
H.
,
Li
,
C.-J.
,
Li
,
G.
,
Coddet
,
C.
, and
Wang
,
X.
,
2006
, “
On High Velocity Impact of Micro-Sized Metallic Particles in Cold Spraying
,”
Appl. Surf. Sci.
,
253
(
5
), pp.
2852
2862
.10.1016/j.apsusc.2006.05.126
18.
Yildirim
,
B.
,
Müftü
,
S.
, and
Gouldstone
,
A.
,
2011
, “
Modeling of High Velocity Impact of Spherical Particles
,”
Wear
,
270
(
9–10
), pp.
703
713
.10.1016/j.wear.2011.02.003
19.
Yin
,
S.
,
Wang
,
X.-F.
,
Li
,
W. Y.
, and
Jie
,
H.-E.
,
2011
, “
Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying
,”
Appl. Surf. Sci.
,
257
(
17
), pp.
7560
7565
.10.1016/j.apsusc.2011.03.126
20.
Bae
,
G.
,
Kumar
,
S.
,
Yoon
,
S.
,
Kang
,
K.
,
Na
,
H.
,
Kim
,
H.-J.
, and
Lee
,
C.
,
2009
, “
Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings
,”
Acta Mater.
,
57
(
19
), pp.
5654
5666
.10.1016/j.actamat.2009.07.061
21.
Yin
,
S.
,
Wang
,
X.-F.
,
Xu
,
B.-P.
, and
Li
,
W.-Y.
,
2010
, “
Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying
,”
J. Therm. Spray Technol.
,
19
(
5
), pp.
1032
1041
.10.1007/s11666-010-9489-9
22.
Zhou
,
X.-L.
,
Wu
,
X.-K.
,
Guo
,
H.-H.
,
Wang
,
J.-G.
, and
Zhang
,
J.-S.
,
2010
, “
Deposition Behavior of Multi-Particle Impact in Cold Spraying Process
,”
Int. J. Miner., Metall. Mater.
,
17
(
5
), pp.
635
640
.10.1007/s12613-010-0367-8
23.
Schmidt
,
T.
,
Assadi
,
H.
,
Gartner
,
F.
,
Richter
,
H.
,
Stoltenhoff
,
T.
,
Kreye
,
H.
, and
Klassen
,
T.
,
2009
, “
From Particle Acceleration to Impact and Bonding in Cold Spraying
,”
J. Therm. Spray Technol.
,
18
(
5–6
), pp.
794
808
.10.1007/s11666-009-9357-7
24.
Li
,
W.-Y.
,
Liao
,
H.
,
Li
,
C.-J.
,
Bang
,
H.-S.
, and
Coddet
,
C.
,
2007
, “
Numerical Simulation of Deformation Behavior of Al Particles Impacting on Al Substrate and Effect of Surface Oxide Films on Interfacial Bonding in Cold Spraying
,”
Appl. Surf. Sci.
,
253
(
11
), pp.
5084
5091
.10.1016/j.apsusc.2006.11.020
25.
Kumar
,
S.
,
Bae
,
G.
, and
Lee
,
C.
,
2009
, “
Deposition Characteristics of Copper Particles on Roughened Substrates Through Kinetic Spraying
,”
Appl. Surf. Sci.
,
255
(
6
), pp.
3472
3479
.10.1016/j.apsusc.2008.10.060
26.
Kumar
,
S.
,
Gyuyeol
,
B.
,
Kicheol
,
K.
,
Sanghoon
,
Y.
, and
Changhee
,
L.
,
2009
, “
Effect of Powder State on the Deposition Behavior and Coating Development in Kinetic Spray Process
,”
J. Phys. D: Appl. Phys.
,
42
(
7
), p.
075305
.10.1088/0022-3727/42/7/075305
27.
Yuan
,
X.
,
Zha
,
B.
,
Hou
,
G.
,
Hou
,
P.
,
Jiang
,
L.
, and
Wang
,
H.
,
2009
, “
Multiscale Model on Deposition Behavior of Agglomerate Metal Particles in a Low-Temperature High-Velocity Air Fuel Spraying Process
,”
J. Therm. Spray Technol.
,
18
(
3
), pp.
411
420
.10.1007/s11666-009-9322-5
28.
Li
,
C.-J.
,
Li
,
W.-Y.
, and
Liao
,
H.
,
2006
, “
Examination of the Critical Velocity for Deposition of Particles in Cold Spraying
,”
J. Therm. Spray Technol.
,
15
(
2
), pp.
212
222
.10.1361/105996306X108093
29.
Kawakita
,
J.
,
Katanoda
,
H.
,
Watanabe
,
M.
,
Yokoyama
,
K.
, and
Kuroda
,
S.
,
2008
, “
Warm Spraying: An Improved Spray Process to Deposit Novel Coatings
,”
Surf. Coat. Technol.
,
202
(
18
), pp.
4369
4373
.10.1016/j.surfcoat.2008.04.011
30.
Manap
,
A.
,
Okabe
,
T.
, and
Ogawa
,
K.
,
2011
, “
Computer Simulation of Cold Sprayed Deposition Using Smoothed Particle Hydrodynamics
,”
Procedia Eng.
,
10
, pp.
1145
1150
.10.1016/j.proeng.2011.04.190
31.
Detemple
,
K.
,
Kanert
,
O.
,
De Hossen
,
J. T. M.
, and
Murty
,
K. L.
,
1995
, “
In Situ Nuclear Magnetic Resonance Investigation of Deformation-Generated Vacancies in Aluminum
,”
Phys. Rev. B
,
52
(
1
), pp.
125
133
.10.1103/PhysRevB.52.125
32.
Gunduz
,
I. E.
,
2006
, “
A Fundamental Study of Metal Structures and Properties in Ultrasonic Welding
,” PhD thesis, Northeastern University, Boston, MA.
33.
Mecking
,
H.
, and
Estrin
,
Y.
,
1980
, “
The Effect of Vacancy Generation on Plastic Deformation
,”
Scr. Metall.
,
14
(
7
), pp.
815
819
.10.1016/0036-9748(80)90295-1
34.
Murty
,
K.
,
Detemple
,
K.
,
Kanert
,
O.
, and
De Hosson
,
J. T. M.
,
1998
, “
In-Situ NMR Investigation of Strain, Temperature and Strain-Rate Variations of Deformation-Induced Vacancy Concentration in Aluminum
,”
Metall. Mater. Trans. A
,
29
(
1
), pp.
153
159
.10.1007/s11661-998-0168-0
35.
Papyrin
,
A.
,
2007
, Cold Spray Technology, Elsevier, Amsterdam. p.
84
.
36.
Osipov
,
K. A.
,
1964
,
Activation Processes in Solid Metals and Alloys, American
Elsevier Publishing Company
,
NY
(translated by Scripta Technica Inc.).
37.
Murr
,
L. E.
,
1975
,
Interfacial Phenomena in Metals and Alloys
,
Addison-Wesley Publishing Company
,
Reading, MA
.
38.
Abaqus
,
2009
,
ABAQUS™ 6.9 User Manual
,
Dassault Systèmes
,
Waltham, MA
.
39.
Seagraves
,
A.
, and
Radovitzky
,
R.
,
2010
, “
Advances in Cohesive Zone Modeling of Dynamic Fracture
,”
Dynamic Failure of Materials and Structures
,
A.
Shukla
,
G.
Ravichandran
, and
Y. D. S.
Rajapakse
, eds.,
Springer
,
Berlin, Germany
, pp.
349
405
.
40.
Rice
,
J. R.
,
1968
, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture: An Advanced Treatise
, Vol
2
,
H.
Liebowitz
, ed.,
Academic
,
NY
, pp.
191
311
.
41.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperature
,”
Proceedings of Seventh International Symposium on Ballistics
,
The Hague, The Netherlands
, Apr. 19–21, pp.
541
547
.
42.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Yen
,
C.-F.
, and
Cheeseman
,
B. A.
,
2012
, “
Modifications in the AA5083 Johnson–Cook Material Model for Use in Friction Stir Welding Computational Analyses
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2207
2217
.10.1007/s11665-011-0118-7
43.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley
,
NY
.
44.
Mpdb
,
2003
,
Mpdb Software, version 7.01 Demo
,
JAHM Software, Inc.
,
North Reading, MA
.
45.
Gupta
,
N. K.
,
Iqbal
,
M. A.
, and
Sekhon
,
G. S.
,
2006
, “
Experimental and Numerical Studies on the Behavior of Thin Aluminum Plates Subjected to Impact by Blunt- and Hemispherical-Nosed Projectiles
,”
Int. J. Impact Eng.
,
32
(
12
), pp.
1921
1944
.10.1016/j.ijimpeng.2005.06.007
46.
Chandrasekaran
,
H.
,
M'Saoubi
,
R.
, and
Chazal
,
H.
,
2005
, “
Modelling of Material Flow Stress in Chip Formation Process From Orthogonal Milling and Split Hopkinson Bar Tests
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
131
145
.10.1081/MST-200051380
47.
Nemat-Nasser
,
S.
,
Guo
,
W. G.
, and
Cheng
,
J. Y.
,
1999
, “
Mechanical Properties and Deformation Mechanisms of a Commercially Pure Titanium
,”
Acta Mater.
,
47
(
13
), pp.
3705
3720
.10.1016/S1359-6454(99)00203-7
48.
Molinari
,
J. F.
, and
Ortiz
,
M.
,
2002
, “
A Study of Solid-Particle Erosion of Metallic Targets
,”
Int. J. Impact Eng.
,
27
(
4
), pp.
347
358
.10.1016/S0734-743X(01)00055-0
49.
Zhou
,
X.
,
Wu
,
X.
,
Wang
,
J.
, and
Zhang
,
J.
,
2011
, “
Numerical Investigation of the Rebounding and the Deposition Behavior of Particles During Cold Spraying
,”
Acta Metall. Sinica (Engl. Lett.)
,
24
(
1
), pp.
43
53
.
50.
Li
,
C. J.
,
Wang
,
H. T.
,
Zhang
,
Q.
,
Yang
,
G. J.
,
Li
,
W. Y.
, and
Liao
,
H. L.
,
2010
, “
Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying
,”
J. Therm. Spray Technol.
,
19
(
1–2
), pp.
95
101
.10.1007/s11666-009-9427-x
51.
Van Steenkiste
,
T. H.
,
Smith
,
J. R.
, and
Teets
,
R. E.
,
2002
, “
Aluminum Coatings via Kinetic Spray With Relatively Large Powder Particles
,”
Surf. Coat. Technol.
,
154
(
2–3
), pp.
237
252
.10.1016/S0257-8972(02)00018-X
52.
Kang
,
K.
,
Yoon
,
S.
,
Ji
,
Y.
, and
Lee
,
C.
,
2008
, “
Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
300
307
.10.1016/j.msea.2007.09.010
53.
Marrocco
,
T.
,
McCartney
,
D. G.
,
Shipway
,
P. H.
, and
Sturgeon
,
A. J.
,
2006
, “
Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization
,”
J. Therm. Spray Technol.
,
15
(
2
), pp.
263
272
.10.1361/105996306X108219
54.
Gartner
,
F.
,
Stoltenhoff
,
T.
,
Schmidt
,
T.
, and
Kreye
,
H.
,
2006
, “
The Cold Spray Process and Its Potential for Industrial Applications
,”
J. Therm. Spray Technol.
,
15
(
2
), pp.
223
232
.10.1361/105996306X108110
55.
Ning
,
X.-J.
,
Jang
,
J.-H.
, and
Kim
,
H.-J.
,
2007
, “
The Effects of Powder Properties on In-Flight Particle Velocity and Deposition Process During Low Pressure Cold Spray Process
,”
Appl. Surf. Sci.
,
253
(
18
), pp.
7449
7455
.10.1016/j.apsusc.2007.03.031
56.
Van Steenkiste
,
T. H.
,
Smith
,
J. R.
,
Teets
,
R. E.
,
Moleski
,
J. J.
,
Gorkiewicz
,
D. W.
,
Tison
,
R. P.
,
Marantz
,
D. R.
,
Kowalsky
,
K. A.
,
Riggs
,
W. L.
, II
,
Zajchowski
,
P. H.
,
Pilsner
,
B.
,
McCune
,
R. C.
, and
Barnett
,
K. J.
,
1999
, “
Kinetic Spray Coatings
,”
Surf. Coat. Technol.
,
111
(
1
), pp.
62
71
.10.1016/S0257-8972(98)00709-9
57.
Gilmore
,
D. L.
,
Dykhuizen
,
R. C.
,
Neiser
,
R. A.
,
Roemer
,
T. J.
, and
Smith
,
M. F.
,
1999
, “
Particle Velocity and Deposition Efficiency in the Cold Spray Process
,”
J. Therm. Spray Technol.
,
8
(
4
), pp.
576
582
.10.1361/105996399770350278
58.
Yildirim
,
B.
, and
Müftü
,
S.
,
2012
, “
Impact of High Velocity Particles Onto a Rough Surface
,”
Int. J. Solids Struct.
,
49
(11–12), pp.
1375
1386
.10.1016/j.ijsolstr.2012.02.018
59.
Goldbaum
,
D.
,
Shockley
,
J. M.
,
Chromik
,
R. R.
,
Rezaeian
,
A.
,
Yue
,
S.
,
Legoux
,
J.-G.
, and
Irissou
,
E.
,
2012
, “
The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats
,”
J. Therm. Spray Technol.
,
21
(
2
), pp.
288
303
.10.1007/s11666-011-9720-3
60.
Kim
,
K.
,
Watanabe
,
M.
,
Mitsuishi
,
K.
,
Iakoubovskii
,
K.
, and
Kuroda
,
S.
,
2009
, “
Impact Bonding and Rebounding Between Kinetically Sprayed Titanium Particle and Steel Substrate Revealed by High-Resolution Electron Microscopy
,”
J. Phys. D: Appl. Phys.
,
42
(
6
), p.
065304
.10.1088/0022-3727/42/6/065304
61.
KeeHyun
,
K.
,
Watanabe
,
M.
, and
Kuroda
,
S.
,
2010
, “
Bonding Mechanisms of Thermally Softened Metallic Powder Particles and Substrates Impacted at High Velocity
,”
Surf. Coat. Technol.
,
204
(
14
), pp.
2175
2180
.10.1016/j.surfcoat.2009.12.001
62.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.