This paper presents the results of the study on mechanical and tribological performance enhancement of 6061 aluminum alloys by incorporation of B4C particle via friction stir processing (FSP). The incorporation of B4C particles reduced friction by 30% and reduced wear by two orders of magnitude compared to unprocessed base material. FSP alone without particles addition did not have a significant effect on the tribological behavior of the aluminum alloy studied.

References

References
1.
Hosking
,
F. M.
,
Portillo
,
F. F.
,
Wunderlin
,
R.
, and
Mehrabian
,
R.
,
1982
, “
Composites of Aluminum Alloys: Fabrication and Wear Behavior
,”
J. Mater. Sci.
,
17
(2), pp.
477
498
.10.1007/BF00591483
2.
Lin
,
S. J.
,
Lin
,
C. A.
,
Wu
,
G. A.
, and
Horng
,
J. L.
,
1996
, “
Sliding Wear of Al2O3p/6061 Al Composite
,”
J. Mater. Sci.
,
31
, pp.
3481
3486
.10.1007/BF00360752
3.
Tang
,
F.
,
Wu
,
X.
,
Ge
,
S.
,
Ye
,
J.
,
Zhu
,
H.
,
Hagiwara
,
M.
, and
Schoenung
,
J. M.
,
2008
, “
Dry Sliding Friction and Wear Properties of B4C Particulate Reinforced Al-5083 Matrix Composites
,”
Wear
,
264
(7–8), pp.
555
561
.10.1016/j.wear.2007.04.006
4.
Kumaran
,
S. T.
, and
Uthayakumar
,
M.
,
2013
, “
Investigation on the Dry Sliding Friction and Wear Behavior of AA6351-SiC-B4C Hybrid Metal Matrix Composites
,”
J. Eng. Tribol.
,
228
(3), pp. 332–338.10.1177/1350650113508103
5.
Katipelli
,
L. R.
,
Agarwal
,
A.
, and
Dahotre
,
N. B.
,
2000
, “
Laser Surface Engineered TiC Coating on 6061 Al Alloy Microstructure and Wear
,”
Appl. Surf. Sci.
,
153
(2–3), pp.
65
78
.10.1016/S0169-4332(99)00368-2
6.
Ma
,
Z. Y.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39
(3), pp.
642
658
.10.1007/s11661-007-9459-0
7.
De
,
P. S.
,
Mishra
,
R. S.
, and
Smith
,
C. B.
,
2009
, “
Effect of Microstructure on Fatigue Life and Fracture Morphology in an Aluminum Alloy
,”
Scr. Mater.
,
60
(
7
), pp.
500
503
.10.1016/j.scriptamat.2008.11.032
8.
Mishra
,
R. S.
,
Ma
,
Z. Y.
, and
Charit
,
I.
,
2003
, “
Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite
,”
Mater. Sci. Eng., A
,
341
(1–2), pp.
307
310
.10.1016/S0921-5093(02)00199-5
9.
Hsu
,
C. J.
,
Chang
,
C. Y.
,
Kao
,
P. W.
,
Ho
,
N. J.
, and
Chang
,
C. P.
,
2006
, “
Al-Al3Ti Nanocomposites Produced in Situ by Friction Stir Processing
,”
Acta Mater.
,
54
(19), pp.
5241
5249
.10.1016/j.actamat.2006.06.054
10.
Gan
,
Y. X.
,
Solomon
,
D.
, and
Reinbolt
,
M.
,
2010
, “
Friction Stir Processing of Particle Reinforced Composite Materials
,”
Materials
,
3
(1), pp.
329
350
.10.3390/ma3010329
11.
Smith
,
C. B.
,
Ajayi
,
O.
,
Lorenzo-Martin
,
M. C.
, and
Krol
,
S. J.
,
2011
, “
Friction Stir Processing of 4140 Steel for Friction and Wear Performance Enhancement
,”
Proceedings of the 21st International Offshore (Ocean) and Polar Engineering
, Maui, HI, June 19–24, Vol.
4
, pp.
472
480
.
12.
Su
,
J. Q.
,
Nelson
,
T. W.
, and
Sterling
,
C. J.
,
2006
, “
Grain Refinement of Aluminum Alloys by Friction Stir Processing
,”
Philos. Mag.
,
86
(
1
), pp.
1
24
.10.1080/14786430500267745
You do not currently have access to this content.