A homogenous phase change model (HPCM) based on the mass conservation law is proposed to analyze the flow field of a two-phase mechanical seal with 3D face structures. The two-phase flow domain is governed by the simultaneous partial differential equation set containing a mass transfer governing equation for each phase with a source term derived from the Rayleigh–Plesset model and a Reynolds equation for the mixture, where the pressure and the liquid fraction are unknowns. A numerical solution is developed based on finite element method (FEM). The results from the present model are in good agreement with those from the previous two-phase mechanical seal models. A two-phase mechanical seal with wavy-tilt-dam face structure is calculated. The results indicate that the 3D face structure affects the phase distribution by altering the film pressure field. The present model is especially useful to analyze the two-phase film flow field bounded by the complex solid surfaces.

References

References
1.
Lebeck
,
A. O.
,
1991
,
Principle and Design of Mechanical Face Seals
,
Wiley
,
New York
.
2.
Nau
,
B. S.
,
1990
, “
Research in Mechanical Seals
,”
Proc. Inst. Mech. Eng., Part C
,
204
(
6
), pp.
349
376
.10.1243/PIME_PROC_1990_204_117_02
3.
Hill
,
R. C.
, and
Rhodes
,
D. B.
,
1986
, “
Behavior of Primary Coolant Pump Shaft Seals During Station Blackout Conditions
,”
International ANS/ENS Topical Meeting on Operability of Nuclear Power Systems in Normal and Adverse Environments
, Albuquerque, NM, September 29–October 3.
4.
Harrison
,
D.
, and
Watkins
,
R.
,
1984
, “
Evaluation of the Forties Main Oil Line Pump Seals
,”
Tenth International Conference on Fluid Sealing
, Innsbruck, Austria, April 3–5, Paper No. Al.
5.
Orcutt
,
F. K.
,
1969
, “
An Investigation of the Operation and Failure of Mechanical Face Seals
,”
ASME J. Lubr. Technol.
,
91
(
4
), pp.
713
725
.10.1115/1.3555029
6.
Hughes
,
W. F.
,
Winowich
,
N. S.
,
Birchak
,
M. J.
, and
Kennedy
,
W. C.
,
1978
, “
Phase Change in Liquid Face Seals
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
74
79
.10.1115/1.3453117
7.
Lebeck
,
A. O.
,
1980
, “
A Mixed Friction Hydrostatic Face Seal Model With Phase Change
,”
ASME J. Lubr. Technol.
,
102
(
2
), pp.
133
138
.10.1115/1.3251450
8.
Lebeck
,
A. O.
, and
Chiou
,
B. C.
,
1982
, “
Two Phase Mechanical Face Seal Operation: Experimental and Theoretical Observations
,”
11th Annual Turbomachinery Symposium
, Texas A&M University, College Station, TX, December 14–16, pp.
181
188
.
9.
Lau
,
S. Y.
,
Hughes
,
W. F.
,
Basu
,
P.
, and
Beatty
,
P. A.
,
1990
, “
A Simplified Model for Two Phase Face Seal Design
,”
Tribol. Trans.
,
33
(
3
), pp.
315
324
.10.1080/10402009008981961
10.
Peng
,
X. D.
,
Xie
,
Y. B.
, and
Gu
,
Y. Q.
,
2003
, “
Evaluation of Mechanical Face Seals Operating With Hydrocarbon Mixtures
,”
Tribol. Int.
,
36
(
3
), pp.
199
204
.10.1016/S0301-679X(02)00172-X
11.
Beeler
,
R. M.
, and
Hughes
,
W. F.
,
1984
, “
Dynamics of Two-Phase Face Seals
,”
ASLE Trans.
,
27
(
2
), pp.
146
153
.10.1080/05698198408981555
12.
Salant
,
R. F.
, and
Blasbalg
,
D. A.
,
1991
, “
Dynamic Behavior of Two-Phase Mechanical Seals
,”
Tribol. Trans.
,
34
(
1
), pp.
122
130
.10.1080/10402009108982019
13.
Blasbalg
,
D. A.
, and
Salant
,
R. F.
,
1995
, “
Numerical Study of Two-Phase Mechanical Seal Stability
,”
Tribol. Trans.
,
38
(
4
), pp.
791
800
.10.1080/10402009508983472
14.
Etsion
,
I.
, and
Pascovici
,
M. D.
,
1996
, “
Hydrodynamic Effects on the Boiling Interface in a Misaligned, Two-Phase, Mechanical Seal—A Qualitative Study
,”
Tribol. Trans.
,
39
(
4
), pp.
922
928
.10.1080/10402009608983613
15.
Etsion
,
I.
, and
Pascovici
,
M. D.
,
1996
, “
Phase Change in a Misaligned Mechanical Face Seal
,”
ASME J. Tribol.
,
118
(
1
), pp.
109
115
.10.1115/1.2837064
16.
Etsion
,
I.
,
Pascovici
,
M. D.
, and
Burstein
,
L.
,
1997
, “
The Boiling Interface in a Misaligned Two-Phase Mechanical Seal
,”
ASME J. Tribol.
,
119
(
2
), pp.
265
272
.10.1115/1.2833180
17.
Yasuna
,
J. A.
, and
Hughes
,
W. F.
,
1990
, “
A Continuous Boiling Model for Face Seals
,”
ASME J. Tribol.
,
112
(
2
), pp.
266
274
.10.1115/1.2920252
18.
Yasuna
,
J. A.
,
Hughes
,
W. F.
, and
Basu
,
P.
,
1994
, “
Squeeze Film Dynamics of Two Phase Seals. II: Turbulent Flow
,”
ASME J. Tribol.
,
116
(
3
), pp.
479
488
.10.1115/1.2928868
19.
Tournerie
,
B.
,
Brunetière
,
N.
, and
Danos
,
J.-C.
,
2003
, “
2D Numerical Modelling of the TEHD Transient Behaviour of Mechanical Face Seals
,”
17th International Conference on Fluid Sealing
, York, UK, April 8–10, pp.
43
57
.
20.
Migout
,
F.
,
2010
, “
Etude theorique et experimentale du changement de phase dans un contact de garniture mécanique d'etancheité
,” Ph.D. thesis, University of Poitiers, Poitiers, France.
21.
Young
,
L. A.
,
Key
,
B.
,
Philipps
,
R.
, and
Svendsen
,
S.
,
2003
, “
Mechanical Seals With Laser Machined Wavy SiC Faces for High Duty Boiler Circulation and Feedwater Applications
,”
Lubr. Eng.
,
59
(
4
), pp.
30
39
, available at: http://www.highbeam.com/doc/1P3-332769811.html
22.
Evans
,
J.
,
Müller
,
H. K.
,
Schefzik
,
C.
, and
Wallace
,
N.
,
1997
, “
Enhanced Performance With Laser-Etched Seal Face Technology
,”
Sealing Technol.
,
1997
(
48
), pp.
7
9
.10.1016/S1350-4789(00)89147-3
23.
Netzel
,
J. P.
,
1982
, “
The Effect of Interface Cooling in Controlling Surface Disturbances in Mechanical Face Seals
,”
Wear
,
79
(
1
), pp.
119
127
.10.1016/0043-1648(82)90208-3
24.
Wang
,
T.
,
Huang
,
W. F.
,
Liu
,
X. F.
,
Li
,
Y. J.
, and
Wang
,
Y. M.
,
2014
, “
Experimental Study of Two-Phase Mechanical Face Seals With Laser Surface Texturing
,”
Tribol. Int.
,
72
(4), pp.
90
97
.10.1016/j.triboint.2013.12.009
25.
Andres
,
L. S.
,
2012
, “
Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022503
.10.1115/1.4004130
26.
Hassini
,
M. A.
, and
Arghir
,
M.
,
2013
, “
Phase Change and Choked Flow Effects on Rotordynamic Coefficients of Cryogenic Annular Seals
,”
ASME J. Tribol.
,
135
(
4
), p.
042201
.10.1115/1.4024376
27.
Hughes
,
W. F.
, and
Chao
,
N. H.
,
1980
, “
Phase Change in Liquid Face Seals II—Isothermal and Adiabatic Bounds With Real Fluids
,”
ASME J. Lubr. Technol.
,
102
(3), pp.
350
357
.10.1115/1.3251540
28.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University
,
Oxford, UK
.
29.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
30.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
You do not currently have access to this content.