Numerical simulations of the elastohydrodynamic lubrication (EHL) have been conducted by many researchers, in which the entrainment velocity is usually parallel to one of the axes of Hertzian contact ellipse. However, in some engineering applications, such as the counterformal contacts in spiral bevel and hypoid gears, entraining velocity vector may have an oblique angle that could possibly influence the lubrication characteristics significantly. Also, a vast majority of gears operate in mixed EHL mode in which the rough surface asperity contacts and lubricant films coexist. These gears are key elements widely used for transmitting significant power in various types of vehicles and engineering machinery. Therefore, model development for the mixed EHL in elliptical contacts with an arbitrary entrainment angle is of great importance. In the present paper, a recently developed mixed EHL model is modified to consider the effect of arbitrary entraining velocity angle, and the model is validated by comparing its results with available experimental data and previous numerical analyses found in literature. Based on this, numerical simulations are conducted to systematically study the influence of entrainment angle on lubricant film thickness in wide ranges of speed, load, and contact ellipticity. The obtained results cover the entire lubrication spectrum from thick-film and thin-film lubrication all the way down to mixed and boundary lubrication. In addition, minimum film thickness prediction formula is also developed through curve-fitting of the numerical results.

References

References
1.
Ranger
,
A. P.
,
Ettles
,
C. M. M.
, and
Cameron
,
A.
,
1975
, “
The Solution of the Point Contact Elastohydrodynamic Problem
,”
Proc. R. Soc. Lond., A
346
(1645), pp.
227
244
.10.1098/rspa.1975.0174
2.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 1—Theoretical Formulation
,”
J. Lubr. Technol.
,
98
(2), pp.
223
229
.10.1115/1.3452801
3.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 2—Ellipticity Parameter Results
,”
J. Lubr. Technol.
,
98
(3), pp.
375
381
.10.1115/1.3452861
4.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 3—Fully Flooded Results
,”
J. Lubr. Technol.
,
99
(2), pp.
264
275
.10.1115/1.3453074
5.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 4—Starvation Results
,”
J. Lubr. Technol.
,
99
(1), pp.
15
23
.10.1115/1.3452973
6.
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1981
, “
Inverse Solution of Reynolds Equation of Lubrication Under Point Contact Elastohydrodynamic Conditions
,”
ASME J. Tribol.
,
103
(4), pp.
539
546
.10.1115/1.3251733
7.
Hou
,
K. P.
,
Zhu
,
D.
, and
Wen
,
S. Z.
,
1987
, “
An Inverse Solution to the Point Contact EHL Problem Under Heavy Loads
,”
ASME J. Tribol.
,
109
(
3
), pp.
432
436
.10.1115/1.3261466
8.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1977
, “
Numerical Solution of the Point Contact Problem Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
11
(10), pp.
1507
1518
.10.1002/nme.1620111003
9.
Okamura
,
H.
,
1982
, “
A Contribution to the Numerical Analysis of Isothermal Elastohydrodynamic Lubrication
,”
Proceedings of 9th Leeds Lyon Symposium on Tribology
, pp.
313
320
.
10.
Houpert
,
L. G.
, and
Hamrock
,
B. J.
,
1986
, “
Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at Heavy Loads
,”
ASME J. Tribol.
,
108
(
3
), pp.
411
420
.10.1115/1.3261220
11.
Zhu
,
D.
,
Cheng
,
H. S.
, and
Hamrock
,
B. J.
,
1990
, “
Effect of Surface Roughness on Pressure Spike and Film Constriction in Elastohydrodynamically Lubricated Line Contacts
,”
Tribol. Trans.
,
33
(2), pp.
267
273
.10.1080/10402009008981955
12.
Lubrecht
,
A. A.
,
1987
, “
The Numerical Solution of Elastohydrodynamic Lubricated Line and Point Contact Problems Using Multigrid Techniques
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
13.
Venner
,
C. H.
,
1991
, “
Multilevel Solution of EHL Line and Point Contact Problems
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
14.
Ai
,
X.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces by Using Semi-System and Multigrid Methods
,” Ph.D. thesis, Northwestern University, Evanston, IL.
15.
Hughes
,
T. G.
,
Elcoate
,
C. D.
, and
Evans
,
H. P.
,
2000
, “
Coupled Solution of the Elastohydrodynamic Line Contact Problem Using a Differential Deflection Method
,”
J. Mech. Eng. Sci.
,
214
, pp.
585
598
.10.1243/0954406001523920
16.
Holmes
,
M. J. A.
,
Evans
,
H. P.
,
Hughes
,
T. G.
, and
Snidle
,
R. W.
,
2003
, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method, Part 1: Theory and Validation
,”
Proc. Inst. Mech. Eng., Part J
,
217
, pp.
289
303
.10.1243/135065003768618641
17.
Zhu
,
D.
, and
Ai
,
X.
,
1997
, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,”
ASME J. Tribol.
,
119
(
3
), pp.
375
384
.10.1115/1.2833498
18.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition from Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,” The Advancing Frontier of Engineering Tribology,
Proceedings of the 1999 STLE/ASME H.S. Cheng Tribology Surveillance
, pp.
150
156
.
19.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.10.1115/1.555322
20.
Liu
,
Y. C.
,
Wang
,
Q.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.10.1115/1.2194916
21.
Wang
,
W. Z.
,
Wang
,
H.
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2003
, “
A Comparative Study of the Methods for Calculation of Surface Elastic Deformation
,”
Proc. Inst. Mech. Eng., Part J
,
217
, pp.
145
152
.10.1243/13506500360603570
22.
Zhu
,
D.
,
2007
, “
On Some Aspects in Numerical Solution of Thin-Film and Mixed EHL
,”
Proc. Inst. Mech. Eng., Part J
,
221
, pp.
561
579
.10.1243/13506501JET259
23.
Zhu
,
D.
, and
Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001 1-14
.10.1115/1.4004457
24.
Chittenden
,
R. J.
,
Dowson
,
D.
,
Dunn
,
J. F.
, and
Taylor
,
C. M.
,
1985
, “
A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts, II—General Case, With Lubricant Entrainment Along Either Principal Axis of the Hertzian Contact Ellipse or at Some Intermediate Angle
,”
Proc. R. Soc. Lond., A
397
(1813), pp.
271
294
10.1098/rspa.1985.0015
25.
Wang
,
J.
,
Qu
,
S.
, and
Yang
,
P.
,
2001
, “
Simplified Multigrid Technique for the Numerical Solution to the Steady-State and Transient EHL Line Contacts and the Arbitrary Entrainment EHL Point Contacts
,”
Tribol. Int.
,
34
(3), pp.
191
202
.10.1016/S0301-679X(01)00020-2
26.
Thorp
,
N.
, and
Gohar
,
R.
,
1972
, “
Oil Film Thickness and Shape for a Ball Sliding in a Grooved Raceway
,”
ASME J. Tribol.
,
94
(
3
), pp.
199
210
.10.1115/1.3451687
27.
Thorp
,
N.
, and
Gohar
,
R.
,
1974
, “
Hydrodynamic Friction in Elliptical and Circular Point Contacts
,”
J. Mech. Eng. Sci.
,
16
, pp.
243
249
.10.1243/JMES_JOUR_1974_016_044_02
28.
Stahl
,
K.
,
Michaelis
,
K.
,
Mayer
,
J.
,
Weigl
,
A.
,
Lohner
,
T.
,
Omasta
,
M.
,
Hartl
,
M.
, and
Krupka
,
I.
,
2013
, “
Theoretical and Experimental Investigations on EHL Point Contacts With Different Entrainment Velocity Directions
,”
Tribol. Trans.
,
56
(5), pp.
728
738
.10.1080/10402004.2013.785624
29.
Zhu
,
D.
, and
Wang
,
Q.
,
2012
, “
On the λ Ratio Range of Mixed Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
226
, pp.
1010
1022
.10.1177/1350650112461867
You do not currently have access to this content.