Inhomogeneities in matrix may significantly affect the performance of mechanical elements, such as possible fatigue life reduction for rolling bearing due to stress concentration induced by inhomogeneities; on the other hand, most components operate under lubrication environment. So far the numerical algorithms to solve lubrication problems without the consideration of inhomogeneities or inclusions are well developed. In this paper, the combination of elastohydrodynamic lubrication (EHL) and inclusion problem is realized to consider the effect of material inhomogeneity on the lubrication performance and subsurface stress distribution, etc. The matrix inhomogeneity will induce disturbed displacement, which will modify the film thickness and consequently result in the change of lubricated contact pressure distribution, etc. The matrix inhomogeneity is treated as the homogeneous inclusion with equivalent eigenstrain according to equivalent inclusion method (EIM), and the disturbed displacement is calculated by semi-analytical method (SAM). While the pressure and film thickness distributions are obtained by solving Reynolds equation. The iterative process is realized to consider the interaction between lubrication behavior and material response. The results show the inhomogeneity in contacting body will greatly influence the lubricated contact performance. The influences are different between compliant and stiff inhomogeneity. It is also found that different sizes and positions of inhomogeneity can significantly affect the contact characteristic parameters.

References

References
1.
Dowson
,
D.
, and
Higginson
,
G.
,
1959
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
, pp.
6
15
.10.1243/JMES_JOUR_1959_001_004_02
2.
Ranger
,
A. P.
,
Ettles
,
C. M. M.
, and
Cameron
,
A.
,
1975
, “
The Solution of the Point Contact Elasto-Hydrodynamic Problem
,”
Proc. R. Soc. London, Ser. A
,
346
(
1645
), pp.
227
244
.10.1098/rspa.1975.0174
3.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
(
2
), pp.
223
228
.10.1115/1.3452801
4.
Rohde
,
S. M.
, and
Oh
,
K. P.
,
1975
, “
A Unified Treatment of Thick and Thin Film Elastohydrodynamic Problems by Using Higher Order Element Methods
,”
Proc. R. Soc. London, Ser. A
,
343
(
1634
), pp.
315
331
.10.1098/rspa.1975.0068
5.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1977
, “
Numerical Solution of the Point Contact Problem Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
11
(
10
), pp.
1507
1518
.10.1002/nme.1620111003
6.
Christensen
,
H.
,
1969
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. lnst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.10.1243/PIME_PROC_1969_184_074_02
7.
Elrod
,
H. G.
,
1973
, “
Thin-Film Lubrication Theory for Newtonian Fluids With Surfaces Possessing Striated Roughness or Grooving
,”
ASME J. Lubr. Technol.
,
95
(
4
), pp.
484
489
.10.1115/1.3451862
8.
Tønder
,
K.
,
1977
, “
Mathematical Verification of the Applicability of Modified Reynolds Equations to Striated Rough Surfaces
,”
Wear
,
44
(
2
), pp.
329
343
.10.1016/0043-1648(77)90148-X
9.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.10.1115/1.3453103
10.
Lubrecht
,
A. A.
,
1987
, “
The Numerical Solution of Elastohydrodynamic Lubricated Line and Point Contact Problems Using Multigrid Techniques
,” Ph.D. thesis, University of Twente, The Netherlands.
11.
Ai
,
X. L.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces by Using Semi-System and Multigrid Methods
,” Ph.D. thesis, Northwestern University, Evanston, IL.
12.
Venner
,
C. H.
, and
Ten Napel
,
W. E.
,
1992
, “
Multilevel Solution of the Elastohydrodynamically Lubricated Circular Contact Problem Part I: Theory and Numerical Algorithm
,”
Wear
,
152
(
2
), pp.
351
367
.10.1016/0043-1648(92)90132-R
13.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1
), pp.
101
111
.10.1016/S0043-1648(00)00427-0
14.
Wang
,
W. Z.
,
Liu
,
Y. C.
,
Wang
,
H.
, and
Hu
,
Y. Z.
,
2004
, “
A Computer Thermal Model of Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
162
170
.10.1115/1.1631012
15.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.10.1115/1.555322
16.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
,
44
(
3
), pp.
383
390
.10.1080/10402000108982471
17.
Wang
,
Z. J.
,
Zhu
,
D.
, and
Wang
,
Q.
,
2013
, “
Elastohydrodynamic Lubrication of Inhomogeneous Materials Using the Equivalent Inclusion Method
,”
ASME J. Tribol.
,
136
(
2
), p.
021501
.10.1115/1.4025939
18.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London. Ser. A
,
241
(
1226
), pp.
376
396
.10.1098/rspa.1957.0133
19.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.10.1115/1.1467920
20.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
587
590
.10.1115/1.3424140
21.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains Are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
.10.1115/1.3424292
22.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
,
2007
, “
A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
,
129
(
4
), pp.
761
771
.10.1115/1.2768076
23.
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2008
, “
A Numerical Model for the Point Contact of Dissimilar Materials Considering Tangential Tractions
,”
Mech. Mater.
,
40
(
11
), pp.
936
948
.10.1016/j.mechmat.2008.06.002
24.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2010
, “
A Numerical Elastic–Plastic Contact Model for Rough Surfaces
,”
Tribol. Trans.
,
53
(
2
), pp.
224
238
.10.1080/10402000903177908
25.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q. J.
,
2008
, “
Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011022
.10.1115/1.2755158
26.
Wang
,
F.
, and
Keer
,
L. M.
,
2005
, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
,
127
(
3
), pp.
494
502
.10.1115/1.1924573
27.
Chen
,
W. W.
,
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2010
, “
Modeling Elasto-Plastic Indentation on Layered Materials Using the Equivalent Inclusion Method
,”
Int. J. Solids Struct
,
47
(
20
), pp.
2841
2854
.10.1016/j.ijsolstr.2010.06.011
28.
Chen
,
W. W.
,
Wang
,
Q. J.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021021
.10.1115/1.2755171
29.
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2011
, “
Semi-Analytic Solution for Multiple Interacting Three-Dimensional Inhomogeneous Inclusions of Arbitrary Shape in an Infinite Space
,”
Int. J. Numer. Methods Eng.
,
87
(
7
), pp.
617
638
.10.1002/nme.3117
30.
Zhou
,
K.
,
Chen
,
W. W.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2009
, “
A Fast Method for Solving Three-Dimensional Arbitrarily Shaped Inclusions in a Half Space
,”
Comput. Method. Appl. Mech. Eng.
,
198
(
9
), pp.
885
892
.10.1016/j.cma.2008.10.021
31.
Liu
,
S. B.
, and
Wang
,
Q.
,
2005
, “
Elastic Fields Due to Eigenstrains in a Half-Space
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
871
878
.10.1115/1.2047598
32.
Liu
,
S. B.
,
Jin
,
X. Q.
,
Wang
,
Z. J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in a Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
, pp.
135
154
.10.1016/j.ijplas.2012.03.002
33.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Liu
,
S. B.
,
Keer
,
L. M.
,
Cao
,
J.
, and
Wang
,
Q.
,
2013
, “
A New Fast Method for Solving Contact Plasticity and its Application in Analyzing Elasto-Plastic Partial Slip
,”
Mech. Mater.
,
60
, pp.
18
35
.10.1016/j.mechmat.2013.01.001
34.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Numerical Methods for Contact Between Two Joined Quarter Spaces and a Rigid Sphere
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2515
2527
.10.1016/j.ijsolstr.2012.05.027
35.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
Novel Model for Partial-Slip Contact Involving a Material With Inhomogeneity
,”
ASME J. Tribol.
,
135
(
4
), p.
041401
.10.1115/1.4024548
36.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Zhou
,
Q. H.
,
Ai
,
X. L.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
.10.1115/1.4023948
37.
Dowson
,
D.
,
Higginson
,
G. R.
,
Archard
,
J.
, and
Crook
,
A.
,
1977
,
Elasto-Hydrodynamic Lubrication
,
Pergamon Press
,
Oxford, UK
.
38.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
London
.
39.
Liu
,
Y. C.
,
Wang
,
Q. J.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.10.1115/1.2194916
40.
Mindlin
,
R. D.
, and
Cheng
,
D. H.
,
1950
, “
Thermoelastic Stress in the Semi-Infinite Solid
,”
J. Appl. Phys.
,
21
(
9
), pp.
931
933
.10.1063/1.1699786
You do not currently have access to this content.