The tangential contact stiffness of cylindrical asperities is investigated using macro- and micro-mechanisms in this study. A microanalysis model is developed and the tangential contact stiffness of elliptically parabolic asperities on the contact surface is determined. The shape influence coefficient of the cylindrical contact is defined, and its rationality is evaluated. The influence of asperity distribution on the rough surface is determined, and the tangential contact stiffness macroanalysis model is constructed based on fractal theory. The mathematical expression to determine the tangential contact stiffness of the macroscopically cylindrical contact is generated, and the effects of influential factors on tangential contact stiffness are explicitly evaluated. Numerical results show that the tangential contact stiffness of asperities is determined by several factors, such as material properties, applied loads, fractal dimension, and surface shape.

References

References
1.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems and Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3
), pp.
857
936
.10.1016/j.jsv.2003.11.064
2.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
London,
UK, pp.
79
128
.
3.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Math. Phys. Sci.
,
295
(
87
), pp.
300
319
.10.1098/rspa.1966.0242
4.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.10.1115/1.2920243
5.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
(
4
), pp.
812
822
.10.1115/1.2927338
6.
Jiang
,
S.
,
Zheng
,
Y.
, and
Zhu
,
H.
,
2010
, “
A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,”
ASME J. Tribol.
,
132
(
1
), p.
011401
.10.1115/1.4000305
7.
Antoine
,
J. F.
,
Visa
,
C.
, and
Sauvey
,
C.
,
2006
, “
Approximate Analytical Model for Hertzian Elliptical Contact Problems
,”
ASME J. Tribol.
,
128
(
7
), pp.
660
664
.10.1115/1.2197850
8.
Zhang
,
X. L.
,
2004
, “
Intelligent Modeling of Contact Stiffness of Machine Contact Interfaces
,”
Int. Conf. Inf. Acquis.
,
45
(
8
), pp.
783
787
.
9.
Huang
,
K.
,
Zhao
,
H.
, and
Chen
,
Q.
,
2008
, “
Research of Fractal Contact Model on Contact Carrying Capacity of Two Cylinders' Surface
,”
Tribology
,
28
(
6
), pp.
529
533
(in Chinese).1004-0595(2008)06-0529-05
10.
Zhao
,
H.
,
Chen
,
Q.
, and
Huang
,
K.
,
2011
, “
Fractal Model of Normal Contact Stiffness Between Two Cylinders' Joint Interfaces
,”
J. Mech. Eng.
,
47
(
7
), pp.
53
58
(in Chinese).10.3901/JME.2011.07.053
11.
Jackson
,
R. L.
, and
Streator
,
J. L.
,
2006
, “
A Multi-Scale Model for Contact Between Rough Surface
,”
Wear
,
261
(
10
), pp.
1337
1347
.10.1016/j.wear.2006.03.015
12.
Ciavarella
,
M.
,
Greenwood
,
J. A.
, and
Paggi
,
M.
,
2008
, “
Inclusion of “Interaction” in the Greenwood and Williamson Contact Theory
,”
Wear
,
265
(
5–6
), pp.
729
734
.10.1016/j.wear.2008.01.019
13.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
2008
, “
Normal and Tangential Compliances of Interface of Rough Surfaces With Contacts of Elliptic Shape
,”
Int. J. Solids Struct.
,
45
(
9
), pp.
2723
2736
.10.1016/j.ijsolstr.2007.12.024
14.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(9), pp.
906
914
.10.1016/j.triboint.2005.09.001
15.
Persson
,
B. N. J.
,
2008
, “
On the Elastic Energy and Stress Correlation in the Contact Between Elastic Solids With Randomly Rough Surfaces
,”
J. Phys.: Condens. Matter
,
20
(31), p.
312001
.
16.
Persson
,
B. N. J.
,
2006
, “
Contact Mechanics for Randomly Rough Surfaces
,”
Surf. Sci. Rep.
,
61
(
4
), pp.
201
227
.10.1016/j.surfrep.2006.04.001
17.
Campañá
,
C.
,
Persson
,
B. N. J.
, and
Müser
,
M. H.
,
2011
, “
Transverse and Normal Interfacial Stiffness of Solids With Randomly Rough Surfaces
,”
J. Phys.: Condens. Matter
,
23
(
8
), p.
085001
.10.1088/9053-8984/23/8/085001
18.
Poulios
,
K.
, and
Klit
,
P.
,
2013
, “
Implementation and Applications of a Finite-Element Model for the Contact Between Rough Surfaces
,”
Wear
,
303
(
1–2
), pp.
1
8
.10.1016/j.wear.2013.02.024
19.
Ciavarella
,
M.
,
Delfine
,
V.
, and
Demelio
,
V.
,
2006
, “
A New 2D Asperity Model With Interaction for Studying the Contact of Multiscale Rough Random Profiles
,”
Wear
,
261
(
5–6
), pp.
556
567
.10.1016/j.wear.2006.01.028
20.
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2008
, “
Investigation of Contact Stiffness and Contact Damping for Magnetic Storage Head-Disk Interfaces
,”
ASME J. Tribol.
,
130
(
2
), pp.
765
772
.10.1115/1.2908901
21.
Dickrell
,
D. J.
, III
, and
Sawyer
,
W. G.
,
2011
, “
Lateral Contact Stiffness and the Elastic Foundation
,”
Tribol. Lett.
,
41
(
1
), pp.
17
21
.10.1007/s11249-010-9666-5
22.
Filippi
,
S.
,
Akay
,
A.
, and
Gola
,
M. M.
,
2004
, “
Measurement of Tangential Contact Hysteresis During Microslip
,”
ASME J. Tribol.
,
126
(
3
), pp.
482
489
.10.1115/1.1692030
23.
Kartal
,
M. E.
,
Mulvihill
,
D. M.
, and
Nowell
,
D.
,
2011
, “
Measurements of Pressure and Area Dependent Tangential Contact Stiffness Between Rough Surfaces Using Digital Image Correlation
,”
Tribol. Int.
,
44
(
12
), pp.
1188
1198
.10.1016/j.triboint.2011.05.025
You do not currently have access to this content.