In the present work, the slurry erosion behavior of friction stir processed (FSPed) hydroturbine steel (CA6NM) was investigated. For comparison, the erosion performance of unprocessed CA6NM steel was evaluated under similar conditions. Friction stir processing (FSP) is a microstructural refinement tool which is useful in enhancing the bulk and surface properties of materials. An in-depth characterization of both steels was done using an optical microscope (OM), a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), the electron backscatter diffraction (EBSD) technique, and micro- and nano-indentation techniques. The FSP of the steel helped in reducing the erosion rates by 50% to 60%, depending upon the impingement angle. The improved performance of the FSPed steel in comparison to unprocessed steel was attributed to microstructural refinement, which increased the hardness and yield strength. At an oblique impingement angle, plowing, along with microcutting, was observed to be the dominant erosion mechanism. At a normal impingement angle, the material removal process was controlled by the platelet mechanism of erosion. A modified form of the mathematical model for predicting the erosion rates of the ductile materials, proposed by authors earlier, was also presented. This modified model based upon the theory of plasticity was able to predict the erosion rates with an accuracy of ±20%.

References

References
1.
Mann
,
B. S.
,
2000
, “
High-Energy Particle Impact Wear Resistance of Hard Coatings and Their Application in Hydroturbines
,”
Wear
,
237
, pp.
140
146
.10.1016/S0043-1648(99)00310-5
2.
Santa
,
J.
,
Baena
,
J.
, and
Toro
,
A.
,
2007
, “
Slurry Erosion of Thermal Spray Coatings and Stainless Steels for Hydraulic Machinery
,”
Wear
,
263
(
1–6
), pp.
258
264
.10.1016/j.wear.2006.12.061
3.
Naidu
,
B. S. K.
,
1997
, “
Addressing the Problems of Silt Erosion at Hydro Plants
,”
Int. J. Hydropower Dams
,
4
(
3
), pp.
72
77
.
4.
Romo
,
S. A.
,
Santa
,
J. F.
,
Giraldo
,
J. E.
, and
Toro
,
A.
,
2012
, “
Cavitation and High-Velocity Slurry Erosion Resistance of Welded Stellite 6 Alloy
,”
Tribol. Int.
,
47
, pp.
16
24
.10.1016/j.triboint.2011.10.003
5.
Alabeedi
,
K. F.
,
Abboud
,
J. H.
, and
Benyounis
,
K. Y.
,
2009
, “
Microstructure and Erosion Resistance Enhancement of Nodular Cast Iron by Laser Melting
,”
Wear
,
266
(
9–10
), pp.
925
933
.10.1016/j.wear.2008.12.015
6.
Cheng
,
F. T.
,
Kwok
,
C. T.
, and
Man
,
H. C.
,
2001
, “
Laser Surfacing of S31603 Stainless Steel With Engineering Ceramics for Cavitation Erosion Resistance
,”
Surf. Coat. Technol.
,
139
(
1
), pp.
14
24
.10.1016/S0257-8972(00)01103-8
7.
Amirhaghi
,
S.
,
Reehal
,
H. S.
,
Wood
,
R. J. K.
, and
Wheeler
,
D. W.
,
2001
, “
Diamond Coatings on Tungsten Carbide and Their Erosive Wear Properties
,”
Surf. Coat. Technol.
,
135
(
2–3
), pp.
126
138
.10.1016/S0257-8972(00)01083-5
8.
Wheeler
,
D. W.
, and
Wood
,
R. J. K.
,
1999
, “
Erosive Wear Behaviour of Thick Chemical Vapour Deposited Diamond Coatings
,”
Wear
,
225-229
(
1
), pp.
523
536
.10.1016/S0043-1648(98)00379-2
9.
Mahoney
,
M. W.
, and Mishra, R. S.
2007
,
Friction Stir Welding and Processing
,
ASM International, Metals Park
,
OH
.
10.
Arora
,
H. S.
,
Singh
,
H.
, and
Dhindaw
,
B. K.
,
2012
, “
Parametric Study of Friction Stir Processing of Magnesium-Based AE42 Alloy
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2328
2339
.10.1007/s11665-012-0205-4
11.
Aldajah
,
S. H.
,
Ajayi
,
O. O.
,
Fenske
,
G. R.
, and
David
,
S.
,
2009
, “
Effect of Friction Stir Processing on the Tribological Performance of High Carbon Steel
,”
Wear,
267
(
1–4
), pp.
350
355
.10.1016/j.wear.2008.12.020
12.
Arora
,
H. S.
,
Singh
,
H.
, and
Dhindaw
,
B. K.
,
2012
, “
Corrosion Behavior of a Mg Alloy AE42 Subjected to Friction Stir Processing
,”
Corrosion
,
69
(
2
), pp.
122
135
.10.5006/0750
13.
Arora
,
H. S.
,
Singh
,
H.
, and
Dhindaw
,
B. K.
,
2013
, “
Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing
,”
Wear,
303
(
1–2
), pp.
65
77
.10.1016/j.wear.2013.02.023
14.
Chen
,
Y. C.
, and
Nakata
,
K.
,
2009
, “
Evaluation of Microstructure and Mechanical Properties in Friction Stir Processed SKD61 Tool Steel
,”
Mater. Char.
,
60
(
12
), pp.
1471
1475
.10.1016/j.matchar.2009.07.004
15.
Dodds
,
S.
,
Jones
,
A. H.
, and
Cater
,
S.
,
2013
, “
Tribological Enhancement of AISI 420 Martensitic Stainless Steel Through Friction-Stir Processing
,”
Wear
,
302
, pp.
863
877
.10.1016/j.wear.2013.01.007
16.
Elangovan
,
K.
, and
Balasubramanian
,
V.
,
2008
, “
Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy
,”
Mater. Des.
,
29
(
2
), pp.
362
373
.10.1016/j.matdes.2007.01.030
17.
Ghasemi-Kahrizsangi
,
A.
, and
Kashani-Bozorg
,
S. F.
,
2012
, “
Microstructure and Mechanical Properties of Steel/Tic Nano-Composite Surface Layer Produced by Friction Stir Processing
,”
Surf. Coat. Technol.
,
209
, pp.
15
22
.10.1016/j.surfcoat.2012.08.005
18.
Mahmoud
,
T. S.
,
2008
, “
Effect of Friction Stir Processing on Electrical Conductivity and Corrosion Resistance of AA6063-T6 Al Alloy
,”
J. Mech. Eng. Sci.
,
222
(
7
), pp.
1117
1123
.10.1243/09544062JMES847
19.
Mahmoud
,
T. S.
, and
Mohamed
,
S. S.
,
2012
, “
Improvement of Microstructural, Mechanical and Tribological Characteristics of A413 Cast Al Alloys Using Friction Stir Processing
,”
Mater. Sci. Eng. A
,
558
, pp.
502
509
.10.1016/j.msea.2012.08.036
20.
Ni
,
D. R.
,
Xiao
,
B. L.
,
Ma
,
Z. Y.
,
Qiao
,
Y. X.
, and
Zheng
,
Y. G.
,
2010
, “
Corrosion Properties of Friction-Stir Processed Cast NiAl Bronze
,”
Corros. Sci.
,
52
(
5
), pp.
1610
1617
.10.1016/j.corsci.2010.02.026
21.
Uematsu
,
Y.
,
Tokaji
,
K.
,
Fujiwara
,
K.
,
Tozaki
,
Y.
, and
Shibata
,
H.
,
2009
, “
Fatigue Behaviour of Cast Magnesium Alloy Az91 Microstructurally Modified by Friction Stir Processing
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
7
), pp.
541
551
.10.1111/j.1460-2695.2009.01358.x
22.
El-Danaf
,
E. A.
,
El-Rayes
,
M. M.
, and
Soliman
,
M. S.
,
2010
, “
Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility
,”
Mater. Des.
,
31
(
3
), pp.
1231
1236
.10.1016/j.matdes.2009.09.025
23.
Ni
,
D. R.
,
Wang
,
D.
,
Feng
,
A. H.
,
Yao
,
G.
, and
Ma
,
Z. Y.
,
2009
, “
Enhancing the High-Cycle Fatigue Strength of Mg–9Al–1Zn Casting by Friction Stir Processing
,”
Scripta Mater.
,
61
(
6
), pp.
568
571
.10.1016/j.scriptamat.2009.05.023
24.
Ma
,
Z. Y.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A,
39A
(
3
), pp.
642
658
.10.1007/s11661-007-9459-0
25.
Morisada
,
Y.
,
Fujii
,
H.
,
Mizuno
,
T.
,
Abe
,
G.
,
Nagaoka
,
T.
, and
Fukusumi
,
M.
,
2009
, “
Nanostructured Tool Steel Fabricated by Combination of Laser Melting and Friction Stir Processing
,”
Mater. Sci. Eng. A,
505
(
1–2
), pp.
157
162
.10.1016/j.msea.2008.11.006
26.
Chang
,
C. I.
,
Du
,
X. H.
, and
Huang
,
J. C.
,
2007
, “
Achieving Ultrafine Grain Size in Mg–Al–Zn Alloy by Friction Stir Processing
,”
Scripta Mater.
,
57
(
3
), pp.
209
212
.10.1016/j.scriptamat.2007.04.007
27.
Mehranfar
,
M.
, and
Dehghani
,
K.
,
2011
, “
Producing Nanostructured Super-Austenitic Steels by Friction Stir Processing
,”
Mater. Sci. Eng. A
,
528
(
9
), pp.
3404
3408
.10.1016/j.msea.2011.01.016
28.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Singh
,
H.
, and
Agrawal
,
A.
, “
Surface Modification of Hydroturbine Steel Using Friction Stir Processing
,”
Appl. Surf. Sci.
,
268
(1), pp. 547–555.
29.
Grewal
,
H. S.
,
Bhandari
,
S.
, and
Singh
,
H.
,
2012
, “
Parametric Study of Slurry-Erosion of Hydroturbine Steels With and Without Detonation Gun Spray Coatings Using Taguchi Technique
,”
Metall. Mater. Trans. A
,
43
(
9
), pp.
3387
3401
.10.1007/s11661-012-1148-y
30.
Grewal
,
H. S.
,
Agrawal
,
A.
, and
Singh
,
H.
,
2013
, “
Design and Development of High-Velocity Slurry Erosion Test Rig Using CFD
,”
J. Mater. Eng. Perform.
,
22
(
1
), pp.
152
161
.10.1007/s11665-012-0219-y
31.
Dao
,
M.
,
Chollacoop
,
N.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.10.1016/S1359-6454(01)00295-6
32.
Chauhan
,
A. K.
,
Goel
,
D. B.
, and
Prakash
,
S.
,
2009
, “
Solid Particle Erosion Behaviour of 13Cr–4Ni and 21Cr–4Ni–N Steels
,”
J. Alloy Compd.
,
467
(
1–2
), pp.
459
464
.10.1016/j.jallcom.2007.12.053
33.
Yadav
,
D.
, and
Bauri
,
R.
,
2012
, “
Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Aluminium
,”
Mater. Sci. Eng. A
,
539
, pp.
85
92
.10.1016/j.msea.2012.01.055
34.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186–187
(
1
), pp.
1
10
.10.1016/0043-1648(95)07188-1
35.
Hutchings
,
I. M.
,
1992
,
Tribology: Friction and Wear of Engineering Materials
,
Edward Arnold
, London.
36.
Shipway
,
P. H.
, and
Hutchings
,
I. M.
,
1996
, “
The Rôle of Particle Properties in the Erosion of Brittle Materials
,”
Wear
,
193
(
1
), pp.
105
113
.10.1016/0043-1648(95)06694-2
37.
Babu
,
P. S.
,
Basu
,
B.
, and
Sundararajan
,
G.
,
2011
, “
The Influence of Erodent Hardness on the Erosion Behavior of Detonation Sprayed Wc-12Co Coatings
,”
Wear,
270
(
11–12
), pp.
903
913
.10.1016/j.wear.2011.02.019
38.
Factor
,
M.
, and
Roman
,
I.
,
2002
, “
Microhardness as a Simple Means of Estimating Relative Wear Resistance of Carbide Thermal Spray Coatings: Part 1. Characterization of Cemented Carbide Coatings
,”
J. Therm. Spray Technol.
,
11
(
4
), pp.
468
481
.10.1361/105996302770348600
39.
Arora
,
H. S.
,
Singh
,
H.
, and
Dhindaw
,
B. K.
,
2012
, “
Some Observations on Microstructural Changes in a Mg-Based AE42 Alloy Subjected to Friction Stir Processing
,”
Metall Mater. Trans. B
,
43
(
1
), pp.
92
108
.10.1007/s11663-011-9573-7
40.
Santella
,
M. L.
,
Engstrom
,
T.
,
Storjohann
,
D.
, and
Pan
,
T. Y.
,
2005
, “
Effects of Friction Stir Processing on Mechanical Properties of the Cast Aluminum Alloys A319 and A356
,”
Scripta Mater.
,
53
(
2
), pp.
201
206
.10.1016/j.scriptamat.2005.03.040
41.
Levy
,
A. V.
,
1995
,
Solid Particle Erosion and Erosion-Corrosion of Materials
,
ASM International
,
Metals Park, OH
.
42.
Jha
,
A. K.
,
Prasad
,
B. K.
,
Modi
,
O. P.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2003
, “
Correlating Microstructural Features and Mechanical Properties With Abrasion Resistance of a High Strength Low Alloy Steel
,”
Wear,
254
(
1–2
), pp.
120
128
.10.1016/S0043-1648(02)00309-5
43.
Bellman
,
R.
, Jr.
, and
Levy
,
A.
,
1981
, “
Erosion Mechanism in Ductile Metals
,”
Wear
,
70
(
1
), pp.
1
27
.10.1016/0043-1648(81)90268-4
44.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.10.1016/0043-1648(60)90055-7
45.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
(
2
), pp.
443
457
.10.1016/0043-1648(95)90158-2
46.
Grewal
,
H. S.
,
Agrawal
,
A.
,
Singh
,
H.
, and
Arora
,
H. S.
,
2012
, “
Development of Novel Mathematical Models for Slurry Erosion Prediction
,”
3rd Asian Conference on Mechanics of Functional Materials and Structures (ACMFMS-2012)
, Dec. 5–8.
47.
Sundararajan
,
G.
,
1991
, “
A Comprehensive Model for the Solid Particle Ductile Materials
,”
Wear,
149
(
1–2
), pp. 111–127.
48.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2008
, “
Slurry Erosion of Ductile Materials Under Normal Impact Condition
,”
Wear,
264
(
3–4
), pp.
322
330
.10.1016/j.wear.2007.03.022
You do not currently have access to this content.