In this paper, a dynamic wear model to predict wear volume in a mechanism, involving aleatory and epistemic uncertainty, is established. In this case, harmonic drives are applied to alleviate the impact of clearance for wear of the mechanism. The contact model of a mechanism with clearance that is subjected to harmonic drive is established, with the nonlinear spring-damp model and flexibility of harmonic gear considered. Especially, a slider-crank mechanism with clearance is simulated. The result shows that the cushioning effect of collisions for clearance with application of harmonic drive is superior to that through the flexibility of mechanical parts. Following confidence region method (CRM) for quantification of aleatory and epistemic uncertainty is proposed to analyze the effect of parameter uncertainty for wear volume during the entire time domain, and double-loop Monte Carlo sampling (MCS) approach is improved to propagate uncertainties during the entire time domain. Finally, based on Kriging model, the CRM is used to analyze the effect of parameter uncertainty for wear volume. The result shows that, when both aleatory and epistemic uncertainties are considered, the wear volume boundary is wider and better than that when only aleatory uncertainty is considered. These analyses help to improve the reliability design of system and set a theoretical foundation for the mechanic design and precision analysis of the mechanical system.

References

References
1.
AbuBakar
,
A. R.
, and
Ouyang
,
H.
,
2008
, “
Wear Prediction of Friction Material and Brake Squeal Using the Finite Element Method
,”
Wear
,
264
, pp.
1069
1076
.10.1016/j.wear.2007.08.015
2.
Kim
,
N. H.
,
Won
,
D.
, and
Burris
,
D.
,
2005
, “
Finite Element Analysis and Experiments of Metal/Metal Wear in Oscillatory Contacts
,”
Wear
,
258
, pp.
1787
1793
.10.1016/j.wear.2004.12.014
3.
Bevill
,
S. L.
,
Bevill
,
G. R.
, and
Penmetsa
,
J. R.
,
2005
, “
Finite Element Simulation of Early Creep and Wear in Total Hip Arthroplasty
,”
J. Biomech.
,
38
, pp.
2365
2374
.10.1016/j.jbiomech.2004.10.022
4.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
, pp.
1114
1127
.10.1016/j.wear.2003.07.001
5.
Põdra
,
P.
, and
Andersson
,
S.
,
1999
, “
Finite Element Analysis Wear Simulation of a Conical Spinning Contact Considering Surface Topography
,”
Wear
,
224
, pp.
13
21
.10.1016/S0043-1648(98)00318-4
6.
Mukras
,
S.
,
Kim
,
N. H.
, and
Mauntler
,
N. A.
,
2010
, “
Comparison Between Elastic Foundation and Contact Force Models in Wear Analysis of Planar Multibody System
,”
ASME J. Tribol.
,
132
, p.
031604
.10.1115/1.4001786
7.
Telliskivi
,
T.
,
2004
, “
Simulation of Wear in a Rolling–Sliding Contact by a Semi-Winkler Model and the Archard's Wear Law
,”
Wear
,
256
, pp.
817
831
.10.1016/S0043-1648(03)00524-6
8.
Põdra
,
P.
, and
Andersson
,
S.
,
1997
, “
Wear Simulation With the Winkler Surface Model
,”
Wear
,
207
, pp.
79
85
.10.1016/S0043-1648(96)07468-6
9.
Flodin
,
A.
, and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
, pp.
16
23
.10.1016/S0043-1648(96)07467-4
10.
Brauer
,
J.
, and
Andersson
,
S.
,
2003
, “
Simulation of Wear in Gears With Flank Interference-a Mixed FE and Analytical Approach
,”
Wear
,
254
, pp.
1216
1232
.10.1016/S0043-1648(03)00338-7
11.
Flodin
,
A.
, and
Andersson
,
S.
,
2001
, “
A Simplified Model for Wear Prediction in Helical Gears
,”
Wear
,
249
, pp.
285
292
.10.1016/S0043-1648(01)00556-7
12.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.10.1063/1.1721448
13.
Dickrell
,
D. J.
,
Dooner
,
D. B.
, and
Sawyer
,
W. G.
,
2003
, “
The Evolution of Geometry for a Wearing Circular Cam: Analytical and Computer Simulation With Comparison to Experiment
,”
ASME J. Tribol.
,
125
, pp.
187
192
.10.1115/1.1504092
14.
Hugnell
,
A. B. J.
,
Björklund
,
S.
, and
Andersson
,
S.
,
1996
, “
Simulation of the Mild Wear in a Cam-Follower Contact With Follower Rotation
,”
Wear
,
199
, pp.
202
210
.10.1016/0043-1648(96)06920-7
15.
Fregly
,
B. J.
,
Sawyer
,
W. G.
, and
Harman
,
M. K.
,
2005
, “
Computational Wear Prediction of a Total Knee Replacement From in vivo Kinematics
,”
J. Biomech.
,
38
, pp.
305
314
.10.1016/j.jbiomech.2004.02.013
16.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
, pp.
1211
1222
.10.1016/j.mechmachtheory.2008.08.003
17.
Mukras
,
S.
,
Kim
,
N. H.
, and
Sawyer
,
W. G.
,
2009
, “
Numerical Integration Schemes and Parallel Computation for Wear Prediction Using Finite Element Method
,”
Wear
,
266
, pp.
822
831
.10.1016/j.wear.2008.12.016
18.
An
,
D.
,
Choi
,
J.
, and
Schmitz
,
T. L.
,
2011
, “
In Situ Monitoring and Prediction of Progressive Joint Wear Using Bayesian Statistics
,”
Wear
,
270
, pp.
828
838
.10.1016/j.wear.2011.02.010
19.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2008
, “
Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty
,” Sandia, Report No. SAND2008-4379.
20.
Sentz
,
K.
, and
Ferson
,
S.
,
2011
, “
Probabilistic Bounding Analysis in the Quantification of Margins and Uncertainties
,”
Reliab. Eng. Syst. Safe.
,
96
, pp.
1126
1136
.10.1016/j.ress.2011.02.014
21.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University, Cambridge
,
UK
.
22.
Koziel
,
S.
, and
Leifsson
,
L.
,
2013
,
Surrogate-Based Modeling and Optimization: Applications in Engineering
,
Springer
,
New York
.
23.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
,
Wiley
,
New York
.
24.
Box
,
G. E. P.
, and
Draper
,
N. R.
,
1987
,
Empirical Model—Building and Response Surfaces
,
Wiley
,
New York
.
25.
Chen
,
S.
,
Chng
,
E. S.
, and
Alkadhimi
,
K.
,
1996
, “
Regularized Orthogonal Least Squares Algorithm for Constructing Radial Basis Function Networks
,”
Int. J. Control
,
64
, pp.
829
837
.10.1080/00207179608921659
26.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
, pp.
389
396
.10.1007/BF02123482
27.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
, pp.
455
492
.10.1023/A:1008306431147
28.
Sacks
,
J.
,
Welch
,
W. J.
, and
Mitchell
,
T. J.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012413
29.
Simpson
,
T. W.
,
Mauery
,
T. M.
, and
Korte
,
J. J.
,
1998
, “
Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization
,” Paper No. AIAA-98-4755.
30.
Lin
,
Y.
,
Haftka
,
R. T.
, and
Queipo
,
N. V.
,
2009
, “
Two-Dimensional Surrogate Contact Modeling for Computationally Efficient Dynamic Simulation of Total Knee Replacements
,”
ASME J. Biomech. Eng.
,
131
, p.
041010
.10.1115/1.3005152
31.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2012
, “
Numerical Study of Parametric Effects on the Dynamic Response of Planar Multi-body Systems With Differently Located Frictionless Revolute Clearance Joints
,”
Mech. Mach. Theory
,
53
, pp.
30
49
.10.1016/j.mechmachtheory.2012.02.007
32.
Spong
,
M. W.
,
1987
, “
Modelling and Control of Elastic Joints Robots
,”
J. Dyn. Sys., Meas., Control
,
109
(
6
), pp.
310
319
.10.1115/1.3143860
33.
Saskatoon
,
2009
, “
Tip Trajectory Tracking of Flexible-Joint Manipulators
,” Ph.D. thesis, Saskatchewan University, Saskatoon, Canada.
34.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Method Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
35.
Bhushan
,
B.
,
2002
,
Introduction to Tribology
,
2nd ed.
,
Wiley
,
New York
.
36.
Hunt
,
K. H.
, and
Crossley
,
F. R.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
, pp.
440
445
.10.1115/1.3423596
37.
Lankarani
,
H. M.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Design
,
112
, pp.
369
376
.10.1115/1.2912617
38.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
, pp.
47
74
.10.1023/B:MUBO.0000042901.74498.3a
39.
Goldsmith
,
W.
,
1960
,
Impact: The Theory and Physical Behaviour of Colliding Solids, Edward Arnold
,
London
.
40.
Flores
,
P.
,
2004
, “
Dynamic Analysis of Mechanical Systems With Imperfect Kinematic Joints
,” Ph.D. thesis, Minho University, Guimarães, Portugal.
41.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.10.1006/jsvi.2000.3416
42.
García-Vallejo
,
D.
,
Mayo
,
J.
, and
Escalona
,
J. L.
,
2004
, “
Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
35
, pp.
313
329
.10.1023/B:NODY.0000027747.41604.20
43.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear-Mechanism Maps
,”
Acta Metall.
,
35
, pp.
1
24
.10.1016/0001-6160(87)90209-4
44.
Cantizano
,
A.
,
Carnicero
,
A.
, and
Zavarise
,
G.
,
2002
, “
Numerical Simulation of Wear-Mechanism Maps
,”
Comput. Struct.
,
25
, pp.
54
60
.10.1016/S0927-0256(02)00249-5
45.
Mukras
,
S. M.
,
2009
, “
Analysis and Design of Planar Multibody Systems With Revolute Joint Wear
,” Ph.D. thesis, Florida University, Gainesville, FL.
46.
Hofer
,
E.
,
Kloos
,
M.
, and
Krzykacz-Hausmann
,
B.
,
2002
, “
An Approximate Epistemic Uncertainty Analysis Approach in the Presence of Epistemic and Aleatory Uncertainties
,”
Reliab. Eng. Syst. Safe.
,
77
, pp.
229
238
.10.1016/S0951-8320(02)00056-X
47.
Huang
,
H.
, and
Zhang
,
X.
,
2009
, “
Design Optimization With Discrete and Continuous Variables of Aleatory and Epistemic Uncertainties
,”
ASME J. Mech. Design
,
131
,
p. 031006
.10.1115/1.3066712
48.
Hacking
,
I.
,
2001
,
An Introduction to Probability and Inductive Logic
,
Cambridge University, Cambridge
,
UK
.
49.
Ross
,
T. J.
,
2004
,
Fuzzy Logic With Engineering Applications
,
Wiley
,
New York
.
50.
Jaulin
,
L.
,
Kieffer
,
M.
, and
Didrit
,
O.
,
2001
,
Applied Interval Analysis
,
Springer-Verlag
,
New York.
51.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University
,
Princeton, NJ
.
52.
Buragohain
,
M.
, and
Mahanta
,
C.
,
2008
, “
A Novel Approach for ANFIS Modelling Based on Full Factorial Design
,”
Appl. Soft Comput.
,
8
, pp.
609
625
.10.1016/j.asoc.2007.03.010
53.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.1080/00401706.1979.10489755
You do not currently have access to this content.