The nanoparticles-laden gas film (NLGF), which is formed by adding nanoparticles into the gas film, has a potential to increase the load capacity of the gas film and to protect the surfaces of the bearing from severe contact damage. In order to explore the lubrication performance of NLGF, the load capacity in the noncontact state and the friction coefficient in the contact state were studied experimentally by a novel NLGF thrust bearing apparatus. The effects of nanoparticles concentration on the load capacity and the friction coefficient were investigated, respectively. The lubrication performance of NLGF in a 200 start-stop cyclic test was evaluated. The contact surfaces were analyzed by the surface profilometer, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS). The results showed that NLGF had the enhancement of the load capacity in the noncontact state and possessed the properties of friction reduction and surface protection in the contact state. An optimal nanoparticles concentration of 60 g/m3 was found, making NLGF have a relative high load capacity in the noncontact state and the lowest friction coefficient in the contact state. With the optimal concentration, the friction coefficient with NLGF kept a low value during the 200 start-stop cyclic test. Then the friction reduction mechanism of NLGF was discussed, and it was inferred that the surface of the disk was covered with a protective film formed by nanoparticles, leading to a lower shear force. This study opens new perspectives of adding nanoparticles into gas bearings to improve the lubrication performance.

References

References
1.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2008
, “
Optimization of Groove Geometry for Thrust Air Bearing to Maximize Bearing Stiffness
,”
ASME J. Tribol.
,
130
(
3
),
031101
.10.1115/1.2913546
2.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Topological and Shape Optimization of Thrust Bearings for Enhanced Load-Carrying Capacity
,”
Tribol. Int.
,
53
, pp.
12
21
.10.1016/j.triboint.2012.03.018
3.
Chen
,
C. H.
,
Tsai
,
T. H.
,
Yang
,
D. W.
,
Kang
,
Y.
, and
Chen
,
J. H.
,
2010
, “
The Comparison in Stability of Rotor-Aerostatic Bearing System Compensated by Orifices and Inherences
,”
Tribol. Int.
,
43
(
8
), pp.
1360
1373
.10.1016/j.triboint.2010.01.006
4.
Rapoport
,
L.
,
Fleischer
,
N.
, and
Tenne
,
R.
,
2003
, “
Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions
,”
Adv. Mater.
,
15
(
7–8
), pp.
651
655
.10.1002/adma.200301640
5.
Zhang
,
M.
,
Wang
,
X. B.
,
Fu
,
X. S.
, and
Xia
,
Y. Q.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-Alpha-Olefin
,”
Tribol. Int.
,
42
(
7
), pp.
1029
1039
.10.1016/j.triboint.2009.02.012
6.
Hsin
,
Y. L.
,
Chu
,
H. Y.
,
Jeng
,
Y. R.
,
Huang
,
Y. H.
,
Wang
,
M. H.
, and
Chang
,
C. K.
,
2011
, “
In Situ De-Agglomeration and Surface Functionalization of Detonation Nanodiamond, With the Polymer Used as an Additive in Lubricant Oil
,”
J. Mater. Chem.
,
21
(
35
), pp.
13,213
13,222
.10.1039/c1jm10903k
7.
Li
,
X. H.
,
Cao
,
Z.
,
Zhang
,
Z. J.
, and
Dang
,
H. X.
,
2006
, “
Surface-Modification in Situ of Nano-SiO2 and its Structure and Tribological Properties
,”
Appl. Surf. Sci.
,
252
(
22
), pp.
7856
7861
.10.1016/j.apsusc.2005.09.068
8.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.10.1016/j.wear.2006.08.021
9.
Sánchez-López
,
J. C.
,
Abad
,
M. D.
,
Kolodziejczyk
,
L.
,
Guerrero
,
E.
, and
Fernández
,
A.
,
2011
, “
Surface-Modified Pd and Au Nanoparticles for Anti-Wear Applications
,”
Tribol. Int.
,
44
(
6
), pp.
720
726
.10.1016/j.triboint.2009.12.013
10.
Liu
,
G.
,
Li
,
X.
,
Qin
,
B.
,
Xing
,
D.
,
Guo
,
Y.
, and
Fan
,
R.
,
2004
, “
Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface
,”
Tribol. Lett.
,
17
(
4
), pp.
961
966
.10.1007/s11249-004-8109-6
11.
Qiu
,
S. Q.
,
Zhou
,
Z. R.
,
Dong
,
J. X.
, and
Chen
,
G. X.
,
2001
, “
Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils
,”
ASME J. Tribol.
,
123
(
3
), pp.
441
443
.10.1115/1.1286152
12.
Li
,
W.
,
Zheng
,
S. H.
,
Cao
,
B. Q.
, and
Ma
,
S. Y.
,
2011
, “
Friction and Wear Properties of ZrO2/SiO2 Composite Nanoparticles
,”
J. Nanopart. Res.
,
13
(
5
), pp.
2129
2137
.10.1007/s11051-010-9970-x
13.
Peng
,
D. X.
,
Kang
,
Y.
,
Hwang
,
R. M.
,
Shyr
,
S. S.
, and
Chang
,
Y. P.
,
2009
, “
Tribological Properties of Diamond and SiO2 Nanoparticles Added in Paraffin
,”
Tribol. Int.
,
42
(
6
), pp.
911
917
.10.1016/j.triboint.2008.12.015
14.
Heshmat
,
H.
,
1995
, “
The Quasi-Hydrodynamic Mechanism of Powder Lubrication-Part III: On Theory and Rheology of Triboparticulates
,”
Tribol. Trans.
,
38
(
2
), pp.
269
276
.10.1080/10402009508983404
15.
Khonsari
,
M. M.
,
1997
, “
On the Modeling of Multi-Body Interaction Problems in Tribology
,”
Wear
,
207
(
1–2
), pp.
55
62
.10.1016/S0043-1648(96)07483-2
16.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2006
, “
On the Role of Enduring Contact in Powder Lubrication
,”
ASME J. Tribol.
,
128
(
1
), pp.
168
175
.10.1115/1.2114933
17.
Klausner
,
J. F.
,
Chen
,
D. M.
, and
Mei
,
R. W.
,
2000
, “
Experimental Investigation of Cohesive Powder Rheology
,”
Powder Technol.
,
112
(
1–2
), pp.
94
101
.10.1016/S0032-5910(99)00310-1
18.
Heshmat
,
H.
,
1993
, “
Wear Reduction Systems for Coal-Fueled Diesel Engines II. Experimental Results and Hydrodynamic Model of Powder Lubrication
,”
Wear
,
162
, pp.
518
528
.10.1016/0043-1648(93)90537-V
19.
Wornyoh
,
E. Y. A.
,
Jasti
,
V. K.
, and
Higgs
,
C. F.
,
2007
, “
A Review of Dry Particulate Lubrication: Powder and Granular Materials
,”
ASME J. Tribol.
,
129
(
2
), pp.
438
449
.10.1115/1.2647859
20.
Powell
,
J. W.
,
1970
,
Design of Aerostatic Bearings
,
Machinery Publishing Ltd.
,
Brighton, UK
.
21.
Enwald
,
H.
,
Peirano
,
E.
, and
Almstedt
,
A. E.
,
1996
, “
Eulerian Two-Phase Flow Theory Applied to Fluidization
,”
Int. J. Multiphase Flow
,
22
, pp.
21
66
.10.1016/S0301-9322(96)90004-X
22.
Zhang
,
W. M.
,
Meng
,
G.
, and
Peng
,
Z. K.
,
2010
, “
Random Surface Roughness Effect on Slider Microbearing Lubrication
,”
Micro Nano Lett.
,
5
(
5
), pp.
347
350
.10.1049/mnl.2010.0141
23.
Xu
,
T.
,
Zhao
,
J. Z.
, and
Xu
,
K.
,
1996
, “
The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive
,”
J. Phys. D
,
29
(
11
), pp.
2932
2937
.10.1088/0022-3727/29/9/036
24.
Ghaednia
,
H.
, and
Jackson
,
R. L.
,
2013
, “
The Effect of Nanoparticles on the Real Area of Contact, Friction, and Wear
,”
ASME J. Tribol.
,
135
(
4
), p.
041603
.10.1115/1.4024297
25.
Fan
,
M.
,
1991
,
Engineered Materials Handbook, Ceramics and Glasses
, Vol.
4
,
ASM International
,
Metal Park, OH
.
You do not currently have access to this content.