We have used an ultrasonic method to determine the normal and shear stiffness for three different surfaces. The degree of hysteresis for the loading/unloading and stiffness ratio is a function of roughness. Nonlinear contact stiffness characteristics are obtained. The ratio of tangential to normal stiffness KT/KN slowly increases in proportion to normal loading. The novelty of our setup is that at the same time we can measure the reflection coefficient, obtain results for three transducers simultaneously, and measure the approach as a function of load. The presented experimental results of normal contact stiffness measurements have been used for the verification of our theoretical model based on a fractal description of rough surfaces (Buczkowski et al., “Fractal Normal Contact Stiffness of Rough Surfaces,” Arch. Mech. (submitted for publication).

References

References
1.
Ciavarella
,
M.
,
Murolo
,
G.
,
Demelio
,
G.
, and
Barber
,
J. R.
,
2004
, “
Elastic Contact Stiffness and Contact Resistance for the Weierstrass Profile
,”
J. Mech Phys. Solids
,
52
, pp.
1247
1265
.10.1016/j.jmps.2003.12.002
2.
Campañá
C.
,
Persson
,
B. N. J.
, and
Müser
,
M. H.
,
2011
, “
Transverse and Normal Interfacial Stiffness With Randomly Rough Surfaces
,”
J. Phys.: Condens. Matter.
,
23
, p.
085001
.10.1088/0953-8984/23/8/085001
3.
Akarapu
,
S.
,
Sharp
,
T.
, and
Robbins
,
M. O.
,
2011
, “
Stiffness of Contact Between Rough Surfaces
,”
Phys. Rev. Lett.
,
106
, p.
204301
.10.1103/PhysRevLett.106.204301
4.
Medina
,
S.
,
Nowell
,
D.
, and
Dini
,
D.
,
2013
, “
Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts
,”
Tribol. Lett.
,
49
, pp.
103
115
.10.1007/s11249-012-0049-y
5.
Pohrt
,
R.
and
Popov
,
V. L.
,
2012
, “
Normal Contact Stiffness of Elastic Solids With Fractal Rough Surfaces
,”
Phys. Rev. Lett.
,
108
, p.
104301
.10.1103/PhysRevLett.108.104301
6.
Pohrt
,
R.
,
Popov
,
V. L.
, and
Filipov
,
A. E.
,
2012
, “
Normal Contact Stiffness of Elastic Solids With Fractal Rough Surfaces for One-and Three-Dimensional Systems
,”
Phys. Rev. E
,
86
, p.
026710
.10.1103/PhysRevE.86.026710
7.
Pastewka
,
L.
,
Prodanov
,
N.
,
Lorenz
,
B.
,
Müser
,
M. H.
,
Robbins
,
M. O.
, and
Persson
,
B. N. J.
,
2013
, “
Finite-Size Scaling in the Interfacial Stiffness of Rough Elastic Contacts
,”
Phys. Rev. E
,
87
, p.
062809
.10.1103/PhysRevE.87.062809
8.
Campañá
C.
,
Müser
,
M. H.
, and
Robbins
,
M. O.
,
2008
, “
Elastic Contact Between Self-Affine Surfaces: Comparison of Numerical Stress and Contact Correlation Functions With Analytical Predictions
,”
J. Phys.: Condens. Matter
,
20
, p.
354013
.10.1088/0953-8984/20/35/354013
9.
Paggi
,
M.
and
Barber
,
J. R.
,
2011
, “
Contact Conductance of Rough Surfaces Composed of Modified RMD Patches
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4664
4672
.10.1016/j.ijheatmasstransfer.2011.06.011
10.
Barber
,
J. R.
,
2003
, “
Bounds on the Electrical Resistance Between Contacting Elastic Rough Bodies
,”
Proc. R. Soc. London, Ser. A
,
459
, pp.
53
66
.10.1098/rspa.2002.1038
11.
Barber
,
J. R.
,
2013
, “
Incremental Stiffness and Electrical Conductance in the Contact of Rough Finite Bodies
,”
Phys. Rev. E
,
87
, p.
013203
.10.1103/PhysRevE.87.013203
12.
Kartal
,
M. E.
,
Mulvihill
,
D. M.
,
Nowell
,
D.
, and
Hills
,
D. A.
,
2011
, “
Measurements of Pressure and Area Dependent Tangential Contact Stiffness Between Rough Surfaces Using Digital Image Correlation
,”
Tribol. Int.
,
44
, pp.
1188
1198
.10.1016/j.triboint.2011.05.025
13.
Quinn
,
A. M.
,
Dwyer-Joyce
,
R. S.
, and
Drinkwater
,
B. W.
,
2002
, “
The Measurement of Contact Pressure in Machine Elements Using Ultrasound
,”
Ultrasonics
,
39
, pp.
495
502
.10.1016/S0041-624X(01)00089-0
14.
Dwyer-Joyce
,
R. S.
,
Drinkwater
,
B. W.
, and
Quinn
,
A. M.
,
2001
, “
The Use of Ultrasound in the Investigation of Rough Surface Interfaces
,”
ASME J. Tribol.
,
123
(1), pp.
8
17
.10.1115/1.1330740
15.
Lewis
,
R.
,
Marsha
,
M. B.
, and
Dwyer-Joyce
,
R. S.
,
2005
, “
Measurement of Interface Pressure in Interference Fit
,”
Proc. Inst. Mech. Eng.
,
Part C
,
219
(
2
), pp.
127
139
.10.1243/095440605X8432
16.
Biwa
,
S.
,
Hiraiwa
,
S.
, and
Matsumoto
,
E.
,
2007
, “
Stiffness Evaluation of Contacting Surfaces by Bulk and Interface Waves
,”
Ultrasonics
,
46
, pp.
123
129
.10.1016/j.ultras.2007.08.005
17.
Biwa
,
S.
,
Suzuki
,
S.
, and
Ohno
,
N.
,
2005
, “
Evaluation of Interface Wave Velocity, Reflection Coefficients and Interfacial Stiffness of Contacting Surfaces
,”
Ultrasonics
,
43
, pp.
495
502
.10.1016/j.ultras.2004.09.003
18.
Kim
,
J. Y.
,
Baltazar
,
A.
, and
Rokhlin
,
S. I.
,
2004
, “
Ultrasonic Assessment of Rough Surface Contact Between Solids for Elastoplastic Loading-Unloading Hysteresis Cycle
,”
J. Mech. Phys. Solids
,
52
, pp.
1911
1934
.10.1016/j.jmps.2004.01.006
19.
Gonzalez-Valadez
,
M.
,
Baltazar
,
A.
, and
Dwyer-Joyce
,
R. S.
,
2010
, “
Study of Interfacial Stiffness Ratio of a Rough Surface in Contact Using a Spring Model
,”
Wear
,
268
, pp.
373
379
.10.1016/j.wear.2009.08.022
20.
Yoshioka
,
N.
and
Scholtz
,
C. H.
,
1989
, “
Elastic Properties of Contacting Surfaces Under Normal and Shear Loads: Part 1—Theory
,”
J. Geophys. Res.
,
94
, pp.
17681
17690
.10.1029/JB094iB12p17681
21.
Sherif
,
H. A.
and
Kossa
,
S. S.
,
1991
, “
Relationship Between Normal and Tangential Contact Stiffness of Nominally Flat Surfaces
,”
Wear
,
151
, pp.
49
62
.10.1016/0043-1648(91)90345-U
22.
Nagy
,
P. B.
,
1992
, “
Ultrasonic Classification of Imperfect Interfaces
,”
J. Nondestruct. Eval.
,
11
, pp.
127
139
.10.1007/BF00566404
23.
Królikowski
,
J.
and
Szczepek
,
J.
,
1993
, “
Assessment of Tangential and Normal Stiffness of Contact Between Rough Surfaces Using Ultrasonic Method
,”
Wear
,
160
, pp.
253
258
.10.1016/0043-1648(93)90428-O
24.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
71
, pp.
259
268
.
25.
Buczkowski
,
R.
,
Kleiber
,
M.
, and
Starzynski
,
G.
, “
Fractal Normal Contact Stiffness of Rough Surfaces
,”
Arch. Mech.
(submitted).
You do not currently have access to this content.