The present study is focused on accurate prediction of the Morton effect problem including journal asymmetric heating and the corresponding long period amplitude oscillations using a nonlinear time transient rotor-dynamic simulation. This paper presents a theoretical model of thermal induced synchronous instability problems in a nonlinear rotor–bearing system, and suggests a new computational algorithm for the nonlinear transient analysis of the Morton effect where the dynamic and thermal problems are combined. For the analysis of the Morton effect problem, a variable viscosity Reynolds equation and a 3D energy equation are coupled via temperature and viscosity, and solved simultaneously. Three-dimensional heat transfer equations of bearing and shaft are modeled by a finite element method, and thermally coupled with the fluid film via a heat flux boundary condition. Asymmetric heat flux into the synchronously whirling rotor is solved by the orbit time averaged heat flux from fluid film to the spinning shaft surface. The journal orbit is calculated by the nonlinear transient dynamic analysis of a rotor–bearing system with a variable time step numerical integration scheme. For the computation time reduction, modal coordinate transformation is adopted in dynamic and thermal transient analysis. Thermal bow effect makes a significant change to the dynamic behavior of a rotor–bearing system, and a thermal hysteresis bode plot, that is one of the characteristics of the Morton effect problem, is presented with time varying spin speed.

References

1.
Tieu
,
A.
,
1973
, “
Oil-Film Temperature Distribution in an Infinitely Wide Slider Bearing: An Application of the Finite-Element Method
,”
J. Mech. Eng. Sci.
,
15
(
4
), pp.
311
320
.10.1243/JMES_JOUR_1973_015_053_02
2.
Khonsari
,
M.
, and
Beaman
,
J.
,
1986
, “
Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings
,”
ASLE Trans.
,
29
(
2
), pp.
141
150
.10.1080/05698198608981671
3.
Knight
,
J.
, and
Barrett
,
L.
,
1988
, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
.10.1115/1.3261550
4.
Earles
,
L.
,
Armentrout
,
R.
, and
Palazzolo
,
A.
,
1990
, “
A Finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings—Part II: Assembled Bearing and System Analysis
,”
ASME J. Tribol.
,
112
(
2
), pp.
178
182
.10.1115/1.2920239
5.
Keogh
,
P.
, and
Morton
,
P.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on Rotor Dynamic Behaviour
,”
Proc. R. Soc. London Ser. A
,
441
(
1913
), pp.
527
548
.10.1098/rspa.1993.0077
6.
Gomiciaga
,
R.
, and
Keogh
,
P.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
.10.1115/1.2833814
7.
Larsson
,
B.
,
1999
, “
Journal Asymmetric Heating—Part I: Nonstationary Bow
,”
ASME J. Tribol.
,
121
(
1
), pp.
157
163
.10.1115/1.2833797
8.
Larsson
,
B.
,
1999
, “
Journal Asymmetric Heating—Part II: Alteration of Rotor Dynamic Properties
,”
ASME J. Tribol.
,
121
(
1
), pp.
164
168
.10.1115/1.2833798
9.
Balbahadur
,
A.
, and
Kirk
,
R.
,
2004
, “
Part II—Case Studies for a Synchronous Thermal Instability Operating in Overhung Rotors
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
477
487
.
10.
Balbahadur
,
A. C.
, and
Kirk
,
R.
,
2004
, “
Part I—Theoretical Model for a Synchronous Thermal Instability Operating in Overhung Rotors
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
469
475
.
11.
Murphy
,
B. T.
, and
Lorenz
,
J. A.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
.10.1115/1.4001512
12.
Childs
,
D. W.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
.10.1115/1.4005973
13.
Lee
,
J. G.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
.10.1115/1.4007884
14.
Meirovitch
,
L.
,
2010
,
Fundamentals of Vibrations
,
Waveland Press
,
Long Grove, IL
, Chap. 7.
15.
Inman
,
D. J.
, and
Singh
,
R. C.
,
2001
,
Engineering Vibration
,
Prentice Hall
,
Englewood Cliffs, NJ
.
16.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
17.
Lund
,
J.
,
1987
, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
,
109
(
1
), pp.
37
41
.10.1115/1.3261324
18.
Lund
,
J.
, and
Thomsen
,
K.
,
1978
, “
A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings
,”
Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization
, ASME, New York, pp.
1
28
.
19.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribol. Trans.
,
37
(
4
), pp.
771
783
.10.1080/10402009408983359
20.
Gadangi
,
R. K.
,
Palazzolo
,
A. B.
, and
Kim
,
J.
,
1996
, “
Transient Analysis of Plain and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects
,”
ASME J. Tribol.
,
118
(
2
), pp.
423
430
.10.1115/1.2831319
21.
Heinrich
,
J.
,
Huyakorn
,
P.
,
Zienkiewicz
,
O.
, and
Mitchell
,
A.
,
1977
, “
An ‘Upwind’ Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
.10.1002/nme.1620110113
22.
De Jongh
,
F. M.
, and
Van Der Hoeven
,
P.
, Eds.,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,” Proceedings of the Twenty-Seventh Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, TX, pp.
17
26
.
23.
De Jongh
,
F.
,
Morton
,
P.
, and
Holmes
,
R.
,
1996
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating. Discussion
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
816
824
.10.1115/1.2816998
You do not currently have access to this content.