Nature has long been an important source of inspiration for mankind to develop artificial ways to mimic the remarkable properties of biological systems. In this work, a new method was explored to fabricate a biomimetic engineering surface comprising both the shark-skin, the shark body denticle, and rib morphology. It can help reduce water resistance and the friction contact area as well as accommodate lubricant. The lubrication theory model was established to predict the effect of geometric parameters of a biomimetic surface on tribological performance. The model has been proved to be feasible to predict tribological performance by the experimental results. The model was then used to investigate the effect of the grid textured surface on frictional performance of different geometries. The investigation was aimed at providing a rule for deriving the design parameters of a biomimetic surface with good lubrication characteristics. Results suggest that: (i) the increase in depression width ratio Λ decreases its corresponding coefficient of friction, and (ii) the small coefficient of friction is achievable when Λ is beyond 0.45. Superposition of depth ratio Γ and angle's couple under the condition of Λ < 0.45 affects the value of friction coefficient. It shows the decrease in angle decreases with the increase in dimension depth Γ.

References

1.
Bhushan
,
B.
, and
Jung
,
Y. C.
,
2011
, “
Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction
,”
Prog. Mater. Sci.
,
56
, pp.
1
108
.10.1016/j.pmatsci.2010.04.003
2.
Büttner
,
C. C.
, and
Schulz
,
U.
,
2011
, “
Shark Skin Inspired Riblet Coatings for Aerodynamically Optimized High Temperature Applications in Aeroengines
,”
Adv. Eng. Mater.
,
13
, pp.
288
295
.10.1002/adem.201000265
3.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
, pp.
503
539
.10.1017/S0022112093002575
4.
Ball
,
P.
,
1999
, “
Engineering Shark Skin and Other Solutions
,”
Nature
,
400
, pp.
507
509
.10.1038/22883
5.
Mizunuma
,
H.
,
Ueda
,
K.
, and
Yokouchi
,
Y.
,
1999
, “
Synergistic Effects in Turbulent Drag Reduction by Riblets and Polymer Additives
,”
J. Fluids Eng.
,
121
, pp.
533
540
.10.1115/1.2823501
6.
Bechert
,
W. D.
,
1999
, Surface for a wall subject to a turbulent flow showing a main direction of flow, U.S .Patent No.5971326.
7.
Scholle
,
M.
,
Rund
,
A.
, and
Aksel
,
N.
,
2006
, “
Drag Reduction and Improvement of Material Transport in Creeping Films
,”
Arch. Appl. Mech.
,
75
, pp.
93
112
.10.1007/s00419-005-0414-5
8.
Su
,
B. H.
, and
Li
,
G. J.
,
2008
, “
Preliminary Study on the Replication Technology of Microstructure of Sharkskin on Polymer Surfaces
,”
J. Mater. Res. Appl.
,
2
, pp.
460
464
.10.3969/j.issn.1673-9981.2008.04.055
9.
Sahlin
,
F.
,
Glavatskikh
,
S.
,
Almqvist
,
T.
, and
Larsson
,
R.
,
2005
, “
Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
127
, pp.
96
102
.10.1115/1.1828067
10.
Tala-Ighil
,
N.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2011
, “
Effect of Textured Area on the Performances of a Hydrodynamic Journal Bearing
,”
Tribol. Int.
,
44
, pp.
211
219
.10.1016/j.triboint.2010.10.003
11.
Wolski
,
M.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2011
, “
Effects of Information Loss in Texture Details due to the PIFS Encoding on Load and Friction in Hydrodynamic Bearings
,”
Tribol. Int.
,
44
, pp.
2002
2012
.10.1016/j.triboint.2011.08.013
12.
Shinkarenko
,
A.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2009
, “
The Effect of Surface Texturing in Soft Elasto-Hydrodynamic Lubrication
,”
Tribol. Int.
,
42
, pp.
284
292
.10.1016/j.triboint.2008.06.008
13.
Ma
,
C. B.
, and
Zhu
,
H.
,
2011
, “
An Optimum Design Model for Textured Surface With Elliptical-Shape Dimples Under Hydrodynamic Lubrication
,”
Tribol. Int.
,
44
, pp.
987
995
.10.1016/j.triboint.2011.04.005
14.
Predescu
,
A.
,
Pascovici
,
M. D.
,
Cicone
,
T.
,
Popescu
,
C. S.
,
Grigoriu
,
C.
, and
Dragulinescu
,
D.
,
2010
, “
Friction Evaluation of Lubricated Laser-Textured Surfaces
,”
Lubric. Sci.
,
22
(
10
), pp.
431
442
.10.1002/ls.123
15.
Hu
,
T. C.
, and
Hu
,
L. T.
,
2012
, “
The Study of Tribological Properties of Laser-Textured Surface of 2024 Aluminium Alloy Under Boundary Lubrication
,”
Lubric. Sci.
,
24
(
2
), pp.
84
93
.10.1002/ls.1165
16.
Menezes
,
P. L.
,
Kishore
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2013
, “
Tribological Response of Soft Materials Sliding Against Hard Surface Textures at Various Numbers of Cycles
,”
Lubric. Sci.
,
25
(
2
), pp.
79
99
.10.1002/ls.1197
17.
Pei
,
S. Y.
,
Ma
,
S. L.
,
Xu
,
H.
,
Wang
,
F. C.
, and
Zhang
,
Y. L.
,
2011
, “
A Multiscale Method of Modeling Surface Texture in Hydrodynamic Regime
,”
Tribol. Int.
,
44
, pp.
1810
1818
.10.1016/j.triboint.2011.07.005
18.
Costa
,
H. L.
, and
Hutchings
,
I. M.
,
2007
, “
Hydrodynamic Lubrication of Textured Steel Surface Under Reciprocating Sliding Conditions
,”
Tribol. Int.
,
40
, pp.
1227
1238
.10.1016/j.triboint.2007.01.014
19.
Hua
,
M.
,
Chow
,
F. C.
, and
Tam
,
H. Y.
,
2009
, “
Effects of the Sliding Speed on Tribological Behaviours of DF2 Tool Steel by Pulsed Nd:YAG Laser
,”
Int. J. Abras. Technol.
,
2
, pp.
329
344
.10.1504/IJAT.2009.029092
20.
Hua
,
M.
,
Dong
,
D. N.
,
Zhang
,
H.
,
Ho
,
J. K. L.
, and
Chow
,
F. C.
,
2013
, “
The Wet Tribological Behaviors of Doughnut Patterns Laser-Textured on DF2 Tool Steel Under Different Loading Conditions
,”
Appl. Phys. A
,
111
, pp.
991
1011
.10.1007/s00339-013-7642-2
21.
Nakano
,
M.
, and
Ando
,
Y.
,
2011
, “
Recent Studies on the Application of Microfabrication Technologies for Improving Tribological Properties
,”
Lubr. Sci.
,
23
(
3
), pp.
99
117
.10.1002/ls.135
22.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1978
, “
Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus
,”
J. Lubr. Techn.
100
, pp.
236
245
.10.1115/1.3453152
23.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
New York
.
24.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2009
, “
On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm
,”
J. Tribol.
,
131
, p.
041702
.10.1115/1.3176994
25.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2009
, “
Fundamentals of Fluid Mechanics
,” 6th ed.,
Wiley
,
New York
.
26.
Ausas
,
R.
,
Ragot
,
P.
,
Leiva
,
J.
,
Jai
,
M.
,
Bayada
,
G.
, and
Buscaglia
,
G. C.
,
2007
, “
The Impact of the Cavitation Model in the Analysis of Micro-Textured Lubricated Journal Bearings
,”
J. Tribol.
,
129
(
4
), pp.
868
875
.10.1115/1.2768088
27.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
J. Tribol.
,
112
, pp.
631
636
.10.1115/1.2920308
28.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
J. Tribol.
,
122
, pp.
1
9
.10.1115/1.555322
You do not currently have access to this content.