While at high pressure, the classical Navier–Stokes equation is suitable for modeling squeeze-film damping, at low pressure, it needs some modification in order to consider fluid rarefaction. According to a common approach, fluid rarefaction can be included in this equation by substituting the standard fluid viscosity with a fictitious quantity, known as effective viscosity, for which different formulations were proposed. In order to identify which expression works better, the results obtained when either formulation is implemented inside the Navier–Stokes equation (that is then solved by both analytical and numerical means) are compared with already available experimental data. At the end, a novel expression is discussed, derived from a computer-assessed optimization procedure.

References

References
1.
Hutcherson
,
S.
, and
Ye
,
W.
,
2004
, “
On the Squeeze-Film Damping of Micro-resonators in the Free-Molecular Regime
,”
J. Micromech. Microeng.
,
14
, pp.
1726
1733
.10.1088/0960-1317/14/12/018
2.
Li
,
P.
, and
Fang
,
Y.
,
2010
, “
A Molecular Dynamics Simulation Approach for the Squeeze-Film Damping of MEMS Devices in the Free Molecular Regime
,”
J. Micromech. Microeng.
,
20
, p.
035005
.10.1088/0960-1317/20/3/035005
3.
Sumali
,
H.
,
2007
, “
Squeeze-Film Damping in the Free Molecular Regime: Model Validation and Measurement on a MEMS
,”
J. Micromech. Microeng.
,
17
, pp.
2231
2240
.10.1088/0960-1317/17/11/009
4.
Pantano
,
M. F.
,
Pagnotta
,
L.
, and
Nigro
,
S.
,
2013
, “
A Numerical Study of Squeeze-Film Damping in MEMS-Based Structures Including Rarefaction Effects
,”
Frattura e integrità strutturale
,
23
, pp.
103
113
.10.3221/IGF-ESIS.23.11
5.
Pandey
,
A. K.
, and
Pratap
,
R.
,
2008
, “
A Semi-analytical Model for Squeeze-Film Damping Including Rarefaction in a MEMS Torsion Mirror With Complex Geometry
,”
J. Micromech. Microeng.
,
18
, p.
105003
.10.1088/0960-1317/18/10/105003
6.
Veijola
,
T.
,
Kuisma
,
H.
,
Lahdenpera
,
J.
, and
Ryhanen
,
T.
,
1995
, “
Equivalent-Circuit Model for the Squeezed Gas Film in a Silicon Accelerometer
,”
Sens. Actuators A
,
48
, pp.
239
248
.10.1016/0924-4247(95)00995-7
7.
Li
,
W. L.
,
1999
, “
Analytical Modeling of Ultra-thin Gas Squeeze-Film
,”
Nanotechnology
,
10
, pp.
440
446
.10.1088/0957-4484/10/4/314
8.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
(2), pp.
253
261
.10.1115/1.3261594
9.
Bao
,
M.
, and
Yang
,
H.
,
2007
, “
Squeeze Film Air Damping in MEMS
,”
Sens. Actuators A
,
136
, pp.
3
27
.10.1016/j.sna.2007.01.008
10.
Pan
,
F.
,
Kubby
,
J.
,
Peeters
,
E.
,
Tran
,
A. T.
, and
Mukherjee
,
S.
,
1998
, “
Squeeze Film Damping Effect on the Dynamic Response of a MEMS Torsion Mirror
,”
J. Micromech. Microeng.
,
8
, pp.
200
208
.10.1088/0960-1317/8/3/005
11.
Minikes
,
A.
,
Bucher
,
I.
, and
Avivi
,
G.
,
2005
, “
Damping of a Micro-resonator Torsion Mirror in Rarefied Gas Ambient
,”
J. Microelectromech. Syst.
,
15
(9), pp.
1762
1769
.10.1088/0960-1317/15/9/019
12.
Pantano
,
M. F.
,
Pagnotta
,
L.
, and
Nigro
,
S.
,
2013
, “
A Novel Expression for the Effective Viscosity to Model Squeeze-Film Damping at Low Pressure
,”
Appl. Mech. Mater.
390
, pp.
76
80
.10.4028/www.scientific.net/AMM.390.76
You do not currently have access to this content.