A top-down approach is employed to investigate the tribological effect of adding nanographite platelets (NGPs) to mineral base oil (MBO). The performance of the NGP-modified MBO was evaluated by examining the friction and anti-wear properties. Four different types of NGPs produced by two different processes were employed. The optimal NGP-modified MBO attained a significant wear and friction reduction when compared with the MBO without NGPs. The process used to exfoliate the graphite nanoplatelet samples provided better wear properties because of the graphene layers' smoother sliding mechanism. Graphene layers seeped inside the groove marks to keep the friction coefficient low.

References

References
1.
Liu
,
W.
, and
Chen
,
S.
,
2000
, “
An Investigation of the Tribological Behaviour of Surface-Modified ZnS Nanoparticles in Liquid Paraffin
,”
Wear
,
238
(
2
), pp.
120
124
.10.1016/S0043-1648(99)00344-0
2.
Zhang
,
Z. F.
,
Liu
,
W. M.
, and
Xue
,
Q. J.
,
2001
, “
The Tribological Behaviors of Succinimide-modified Lanthanum Hydroxide Nanoparticles Blended With Zinc Dialkyldithiophosphate as Additives in Liquid Paraffin
,”
Wear
,
248
(
1–2
), pp.
48
54
.10.1016/S0043-1648(00)00541-X
3.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
A.
,
Liu
,
W.
, and
Dang
,
H.
,
2001
, “
Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin
,”
Wear
,
249
(
5–6
), pp.
333
337
.10.1016/S0043-1648(00)00547-0
4.
Senatore
,
A.
,
D'Agostino
,
V.
,
Petrone
,
V.
,
Ciambelli
,
P.
, and
Sarno
,
M.
,
2013
, “
Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods, and Tribological Results
,”
ISRN Tribology
Vol. 2013, pp. 1–9.10.5402/2013/425809
5.
Kumar
,
N.
,
Dash
,
S.
,
Tyagi
,
A. K.
, and
Raj
,
B.
,
2011
, “
Super Low to High Friction of Turbostratic Graphite Under Various Atmospheric Test Conditions
,”
Tribol. Int.
,
44
(
12
), pp.
1969
1978
.10.1016/j.triboint.2011.08.012
6.
Miyoshi
,
K.
,
Street
, Jr.,
K. W.
,
Vander Wal
,
R. L.
,
Andrews
,
R.
, and
Sayir
,
A.
,
2005
, “
Solid Lubricant by Multiwalled Carbon Nanotubes in Air and in Vacuum
,”
Tribol. Lett.
,
19
(
3
), pp.
191
201
.10.1007/s11249-005-6146-4
7.
Lu
,
H. F.
,
Fei
,
B.
,
Xin
,
J. H.
,
Wang
,
R. H.
,
Li
,
L.
, and
Guan
,
W. C.
,
2007
, “
Synthesis and Lubricating Performance of a Carbon Nanotube Seeded Miniemulsion
,”
Carbon
,
45
(
5
), pp.
936
942
.10.1016/j.carbon.2007.01.001
8.
Zhang
,
W.
,
Xu
,
B.
,
Tanaka
,
A.
, and
Koga
,
Y.
,
2009
, “
Frictional Behaviour of Vertically Aligned Carbon Nanotube Films
,”
Carbon
,
47
(
3
), pp.
926
929
.10.1016/j.carbon.2008.12.036
9.
Huang
,
H. D.
,
Tu
,
J. P.
,
Gan
,
L. P.
, and
Li
,
C. Z.
,
2006
, “
An Investigation on Tribological Properties of Graphite Nanosheets as Oil Additive
,”
Wear
,
261
(
2
), pp.
140
144
.10.1016/j.wear.2005.09.010
10.
Lin
,
J.
,
Wang
,
L.
, and
Chen
,
G.
,
2011
, “
Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive
,”
Tribol. Lett.
,
41
(
1
), pp.
209
215
.10.1007/s11249-010-9702-5
11.
Belmonte
,
M.
,
Ramírez
,
C.
,
González-Julián
,
J.
,
Schneider
,
J.
,
Miranzo
,
P.
, and
Osendi
,
M. I.
,
2013
, “
The Beneficial Effect of Graphene Nanofillers on the Tribological Performance of Ceramics
,”
Carbon
,
61
, pp.
431
435
.10.1016/j.carbon.2013.04.102
12.
Nieto
,
A.
,
Lahiri
,
D.
, and
Agarwal
,
A.
,
2012
, “
Synthesis and Properties of Bulk Graphene Nanoplatelets Consolidated by Spark Plasma Sintering
,”
Carbon
,
50
(
11
), pp.
4068
4077
.10.1016/j.carbon.2012.04.054
13.
Lee
,
H.
,
Lee
,
N.
,
Seo
,
Y.
,
Eom
,
J.
, and
Lee
,
S. W.
,
2009
, “
Comparison of Frictional Forces on Graphene and Graphite
,”
Nanotechnology
,
20
(
32
), p.
325701
.10.1088/0957-4484/20/32/325701
14.
Lin
,
L. Y.
,
Kim
,
D. E.
,
Kim
,
W. K.
, and
Jun
,
S. C.
,
2011
, “
Friction and Wear Characteristics of Multi-layer Graphene Films Investigated by Atomic Force Microscopy
,”
Surf. Coat. Technol.
,
205
(
20
), pp.
4864
4869
.10.1016/j.surfcoat.2011.04.092
15.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces
,”
Carbon
,
54
, pp.
454
459
.10.1016/j.carbon.2012.11.061
16.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen
,”
Carbon
,
59
, pp.
167
175
.10.1016/j.carbon.2013.03.006
17.
Alberts
,
M.
,
Kalaitzidou
,
K.
, and
Melkote
,
S.
,
2009
, “
An Investigation of Graphite Nanoplatelets as Lubricant in Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
966
970
.10.1016/j.ijmachtools.2009.06.005
18.
Fukushima
,
H.
, and
Drzal
,
L. T.
,
2002
, “
Graphite Nanoplatelets as Reinforcements for Polymers: Structural and Electrical Properties
,”
Proceedings of the 17th Annual Conference of the American Society for Composites
,
Purdue University, West Lafayette
, IN.
19.
Filleter
,
T.
,
McChesney
,
J. L.
,
Bostwick
,
A.
,
Rotenberg
,
E.
,
Emtsev
,
K. V.
,
Seyller
,
T.
,
Horn
,
K.
, and
Bennewitz
,
R.
,
2009
, “
Friction and Dissipation in Epitaxial Graphene Films
,”
Phys. Rev. Lett.
,
102
(
8
), p.
086102
.10.1103/PhysRevLett.102.086102
20.
Lee
,
C.
,
Wei
,
X.
,
Li
,
Q.
,
Carpick
,
R.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2009
, “
Elastic and Frictional Properties of Graphene
,”
Phys. Status Solidi B
,
246
(
11–12
), pp.
2562
2567
.10.1002/pssb.200982329
21.
Nacional de Grafite Privat Reports ref.
EMS 1227, EMS 635, EMS 1893.
22.
D445-12
,
2012
, “
Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)
,”
ASTM
International, West Conshohocken, PA.10.1520/D0445-12
23.
D93-13
,
2013
, “
Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester
,”
ASTM
International, West Conshohocken, PA.10.1520/D0093
24.
Avila
,
A. F.
,
Yoshida
,
M.
I
.
,
Carvalho
,
M. G. R.
,
Dias
,
E. C.
, and
Ávila
, Jr.
,
J.
,
2010
, “
An Investigation on Post-fire Behavior of Hybrid Nanocomposites Under Bending Loads
,”
Composites, Part B
,
41
(
5
), pp.
380
387
.10.1016/j.compositesb.2010.02.002
25.
D4172-94
,
2010
, “
Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method)
,”
ASTM
International, West Conshohocken, PA.10.1520/D4172-94R10
26.
D5183-05
,
2011
, “
Standard Test Method for Determination of the Coefficient of Friction of Lubricants Using the Four-Ball Wear Test Machine
,”
ASTM
International, West Conshohocken, PA.10.1520/D5183-05R11
27.
Birks
,
L. S.
, and
Friedman
,
H.
,
1946
, “
Particle Size Determination from X-Ray Line Broadening
,”
J. Appl. Phys.
,
17
, pp.
687
692
.10.1063/1.1707771
28.
Tao
,
X.
,
Jiazheng
,
Z.
, and
Kang
,
X.
,
1996
, “
The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive
,”
J. Phys. D: Appl. Phys.
,
29
(
11
), pp.
2932
2937
.10.1088/0022-3727/29/11/029
29.
Rapoport
,
L.
,
Nepomnyashchy
,
O.
,
Lapsker
,
I.
,
Verdyan
,
A.
,
Moshkovich
,
A.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2005
, “
Behavior of Fullerene-like WS2 Nanoparticles Under Severe Contact Conditions
,
Wear
,
259
(
1–6
), pp.
703
707
.10.1016/j.wear.2005.01.009
You do not currently have access to this content.