In this study, the wear depths under different loads, speeds, lubricant temperatures, and surface roughness amplitudes are experimentally determined using a twin-disk rolling contact setup. A point contact wear model combining a contact formulation and Archard's wear equation in an iterative manner is developed to simulate the wear process of the experiments. By matching the measured and predicted wear profiles, the wear coefficients under different operating and surface conditions are determined. It is found that the wear coefficient increases when either the load or the surface roughness amplitude increases and decreases as the lubricant pressure-viscosity coefficient increases. Within the operating ranges considered, it is observed that the lubricant pressure-viscosity coefficient is the most influential parameter on wear, the load has the least impact, and the surface roughness amplitude is in between. Lastly, a regression formula is given for the estimation of Archard's wear coefficient.

References

1.
Wu
,
S.
and
Cheng
,
H. S.
,
1991
, “
A Sliding Wear Model for Partial-EHL Contacts
,”
ASME J. Tribol.
,
113
(
1
), pp.
134
141
.10.1115/1.2920579
2.
Li
,
S.
and
Kahraman
,
A.
,
2013
, “
A Physics-Based Model to Predict Micro-Pitting Lives of Lubricated Point Contacts
,”
Int. J. Fatigue
,
47
, pp.
205
215
.10.1016/j.ijfatigue.2012.09.002
3.
Li
,
S.
and
Kahraman
,
A.
,
2013
, “
Micro-Pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,”
Int. J. Fatigue
,
48
, pp.
9
18
.10.1016/j.ijfatigue.2012.12.003
4.
Li
,
S.
and
Kahraman
,
A.
,
2014
, “
A Micro-Pitting Model for Spur Gear Contacts
,”
Int. J. Fatigue
,
59
, pp.
224
233
.10.1016/j.ijfatigue.2013.08.015
5.
Meng
,
H. C.
and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
183
, pp.
443
457
.10.1016/0043-1648(95)90158-2
6.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.10.1063/1.1721448
7.
Flodin
,
A.
and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
(
1
), pp.
16
23
.10.1016/S0043-1648(96)07467-4
8.
Flodin
,
A.
and
Andersson
,
S.
,
2000
, “
Simulation of Mild Wear in Helical Gears
,”
Wear
,
241
(
2
), pp.
123
128
.10.1016/S0043-1648(00)00384-7
9.
Bajpai
,
P.
,
Kahraman
,
A.
, and
Anderson
,
N. E.
,
2004
, “
A Surface Wear Prediction Methodology for Parallel-Axis Gear Pairs
,”
ASME J. Tribol.
,
126
(
3
), pp.
597
605
.10.1115/1.1691433
10.
Kahraman
,
A.
,
Bajpai
,
P.
, and
Anderson
,
N. E.
,
2005
, “
Influence of Tooth Profile Deviations on Helical Gear Wear
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
656
663
.10.1115/1.1899688
11.
Park
,
D.
and
Kahraman
,
A.
,
2009
, “
A Surface Wear Model for Hypoid Gear Pairs
,”
Wear
,
267
(
9
), pp.
1595
1604
.10.1016/j.wear.2009.06.017
12.
Park
,
D.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2012
, “
Prediction of Surface Wear of Hypoid Gears Using a Semi-Analytical Contact Model
,”
Mech. Mach. Theory
,
52
, pp.
180
194
.10.1016/j.mechmachtheory.2012.01.019
13.
Yuksel
,
C.
and
Kahraman
,
A.
,
2004
, “
Dynamic Tooth Loads of Planetary Gear Sets Having Tooth Profile Wear
,”
Mech. Mach. Theory
,
39
(
7
), pp.
695
715
.10.1016/j.mechmachtheory.2004.03.001
14.
Ding
,
H.
and
Kahraman
,
A.
,
2007
, “
Interactions Between Nonlinear Spur Gear Dynamics and Surface Wear
,”
J. Sound Vib.
,
307
, pp.
662
679
.10.1016/j.jsv.2007.06.030
15.
Kahraman
,
A.
and
Ding
,
H.
,
2010
, “
A Methodology to Predict Surface Wear of Planetary Gears Under Dynamic Conditions
,”
Mech. Based Des. Struct. Mach.
,
38
(
4
), pp.
493
515
.10.1080/15397734.2010.501312
16.
Priest
,
M.
and
Taylor
,
C. M.
,
2000
, “
Automobile Engine Tribology—Approaching the Surface
,”
Wear
,
241
(
2
), pp.
193
203
.10.1016/S0043-1648(00)00375-6
17.
LDP,
2012
, “
Gear Load Distribution Program
,” Gear and Power Transmission Research Laboratory, The Ohio State University, Columbus, Ohio.
18.
Wu
,
S.
and
Cheng
,
H. S.
,
1993
, “
Sliding Wear Calculation in Spur Gears
,”
ASME J. Tribol.
,
115
(
3
), pp.
493
500
.10.1115/1.2921665
19.
Akbarzadeh
,
S.
and
Khonsari
,
M. M.
,
2009
, “
Prediction of Steady State Adhesive Wear in Spur Gears Using the EHL Load Sharing Concept
,”
ASME J. Tribol.
,
131
(
2
), p.
024503
.10.1115/1.3075859
20.
Krantz
,
T. L.
and
Kahraman
,
A.
,
2004
, “
An Experimental Investigation of the Influence of the Lubricant Viscosity and Additives on Gear Wear
,”
Tribol. Trans.
,
47
(
1
), pp.
138
148
.10.1080/05698190490278949
21.
Li
,
S.
and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
.10.1016/j.ijfatigue.2010.09.021
22.
Yoshida
,
A.
and
Konishi
,
D.
,
1996
, “
Study on Influences of Machining Method and Surface Roughness on Pitting of Thermally Refined Steel Rollers (IV): In the Case of Rollers With Axial Tool Marks Mating With Cylindrically Ground Roller
,”
Jap. J. Tribol
,
40
, pp.
425
436
.
23.
Li
,
S.
,
2013
, “
Influence of Surface Roughness Lay Directionality on Scuffing Failure of Lubricated Point Contacts
,”
ASME J. Tribol.
,
135
(
4
), p.
041502
.10.1115/1.4024783
24.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, England
.
25.
Li
,
S.
and
Kahraman
,
A.
,
2009
, “
A Mixed EHL Model With Asymmetric Integrated Control Volume Discretization
,”
Tribol. Int.
,
42
(
8
), pp.
1163
1172
.10.1016/j.triboint.2009.03.020
26.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N.
, and
Wedeven
,
L. D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-on-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.10.1016/j.triboint.2012.11.007
27.
Polonsky
,
L. A.
and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.10.1016/S0043-1648(99)00113-1
You do not currently have access to this content.