Efficiency and durability are among the top concerns in mechanical design to minimize environmental impact and conserve natural resources while fulfilling performance requirements. Today mechanical systems are more compact, lightweight, and transmit more power than ever before, which imposes great challenges to designers. Under the circumstances, some simplified analyses may no longer be satisfactory, and in-depth studies on mixed lubrication characteristics, taking into account the effects of 3D surface roughness and possible plastic deformation, are certainly needed. In this paper, the recently developed plasto-elastohydrodynamic lubrication (PEHL) model is employed, and numerous cases with both sinusoidal waviness and real machined roughness are analyzed. It is observed that plastic deformation may occur due to localized high pressure peaks caused by the rough surface asperity contacts, even though the external load is still considerably below the critical load determined at the onset of plastic deformation in the corresponding smooth surface contact. It is also found, based on a series of cases analyzed, that the roughness height, wavelength, material hardening property, and operating conditions may all have significant influences on the PEHL performance, subsurface von Mises stress field, residual stresses, and plastic strains. Generally, the presence of plastic deformation may significantly reduce some of the pressure spikes and peak values of subsurface stresses and make the load support more evenly distributed among all the rough surface asperities in contact.

References

References
1.
Petrusevich
,
A. I.
,
1951
, “
Fundamental Conclusions From the Contact-Hydrodynamic Theory of Lubrication
,”
Izv. Akad. Nauk SSR (OTN)
,
2
, pp.
209
233
.
2.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elastohydrodynamic Problem
,”
J. Eng. Sci.
,
1
, pp.
6
15
.
3.
Ranger
,
A. P.
,
Ettles
,
C. M. M.
, and
Cameron
,
A.
,
1975
, “
The Solution of the Point Contact Elasto-Hydrodynamic Problem
,”
Proc. R. Soc. London, Ser. A
,
346
, pp.
227
244
.10.1098/rspa.1975.0174
4.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III—Fully Flooded Results
,”
ASME J. Tribol.
,
99
(2), pp.
264
276
.10.1115/1.3453074
5.
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1981
, “
Inverse Solution of Reynolds Equation of Lubrication Under Point Contact Elastohydrodynamic Conditions
,”
ASME J. Tribol.
,
103
(4), pp.
539
546
.10.1115/1.3251733
6.
Zhu
,
D.
, and
Wen
,
S. Z.
,
1984
, “
A Full Numerical Solution for the Thermoelastohydrodynamic Problem in Elliptical Contacts
,”
ASME J. Tribol.
,
106
(2), pp.
246
254
.10.1115/1.3260895
7.
Lubrecht
,
A. A.
,
1987
, “
The Numerical Solution of Elastohydrodynamic Lubricated Line and Point Contact Problems Using Multigrid Techniques
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
8.
Kweh
,
C. C.
,
Evans
,
H. P.
, and
Sindle
,
R. W.
,
1989
, “
Micro-Elastohydrodynamic Lubrication of an Elliptical Contact With Transverse and Thee-Dimensional Roughness
,”
ASME J. Tribol.
,
111
(4), pp.
577
584
.10.1115/1.3261980
9.
Kweh
,
C. C.
,
Patching
,
M. J.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1992
, “
Simulation of Elastohydrodynamic Contacts Between Rough Surfaces
,”
ASME J. Tribol.
,
114
(3), pp.
412
419
.10.1115/1.2920900
10.
Venner
,
C. H.
,
1991
, “
Multilevel Solution of EHL Line and Point Contact Problems
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
11.
Ai
,
X.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces By Using Semi-System and Multigrid Methods
,” Ph.D. thesis, Northwestern University, Evanston, IL.
12.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(3), pp.
473
483
.10.1115/1.2831560
13.
Zhu
,
D.
, and
Ai
,
X.
,
1997
, “
Point Contact EHL Based on Optically Measured 3D Rough Surfaces
,”
ASME J. Tribol.
,
119
(3), pp.
375
384
.10.1115/1.2833498
14.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition from Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
Proceedings of the 1999 STLE/ASME H.S. Cheng Tribology Surveillance
, The Advancing Frontier of Engineering Tribology, pp.
150
156
.
15.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(1), pp.
1
9
.10.1115/1.555322
16.
Wang
,
W. Z.
,
Wang
,
H.
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2003
, “
A Comparative Study of the Methods for Calculation of Surface Elastic Deformation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
217
, pp.
145
152
.10.1243/13506500360603570
17.
Liu
,
Y. C.
,
Wang
,
Q.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(3), pp.
641
653
.10.1115/1.2194916
18.
Zhu
,
D.
,
2007
, “
On Some Aspects in Numerical Solution of Thin-Film and Mixed EHL
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
221
, pp.
561
579
.10.1243/13506501JET259
19.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
, pp.
101
111
.10.1016/S0043-1648(00)00427-0
20.
Liu
,
S.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(1), pp.
36
45
.10.1115/1.1401017
21.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of A 3D Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(4), pp.
653
667
.10.1115/1.1467920
22.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
,
2007
, “
A 3D Semianalytical Model for Elastic–Plastic Sliding Contacts
,”
ASME J. Tribol.
,
129
(4), pp.
761
771
.10.1115/1.2768076
23.
Chen
,
W. W.
,
Liu
,
S. B.
, and
Wang
,
Q.
,
2008
, “
Fast Fourier Transform Based Numerical Methods for Elasto–Plastic Contacts With Nominally Flat Surface
,”
ASME J. Appl. Mech.
,
75
(1), p.
011022
.10.1115/1.2755158
24.
Wang
,
F.
, and
Keer
,
L. M.
,
2005
, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
,
127
(3), pp.
494
502
.10.1115/1.1924573
25.
Chen
,
W. W.
, and
Wang
,
Q.
,
2008
, “
Thermomechanical Analysis of Elasto-Plastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,”
ASME J. Tribol.
,
130
(4), p.
041402
.10.1115/1.2959110
26.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2010
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts
,”
ASME J. Tribol.
,
132
(3), p.
031501
.10.1115/1.4001813
27.
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
3D Plasto- Elastohydrodynamic Lubrication (PEHL) for Surfaces With Irregularities
,”
ASME J. Tribol.
,
133
(3), p.
031502
.10.1115/1.4004100
28.
Ren
,
N.
,
2009
, “
Advanced Modeling of Mixed Lubrication and Its Mechanical and Biomedical Applications
,” Ph.D. thesis, Northwestern University, Evanston, IL.
29.
Zhu
,
D.
, and
Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication (EHL): A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(4), p.
041001
.10.1115/1.4004457
30.
Zhu
,
D.
, and
Wang
,
Q.
,
2012
, “
On the λ Ratio Range of Mixed Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
226
, pp.
1010
1022
.10.1177/1350650112461867
31.
Zhu
,
D.
Liu
,
Y.
, and
Wang
,
Q.
,
2014
, “
On the Numerical Accuracy of Rough Surface EHL Solution
,”
Tribol. Trans.
,
57
, pp.
570
580
.10.1080/10402004.2014.886349
You do not currently have access to this content.