The macromechanical tribological mechanism describes the friction phenomenon by considering the stress and the strain distributions, and the total elastic and plastic deformations. Based on the finite element method (FEM), the elastoplastic frictional contact problem is formulated as an incremental convex programming model (CPM). The Lagrange multiplier approach is adopted for imposing the inequality contact constraints. The Coulomb's friction law and the Prandtl–Reuss flow rule are used for the friction conditions and the elastoplastic behavior, respectively. The frictional contact examples are analyzed using the developed adaptive incremental procedure to elucidate the tribological behavior of the contact bodies and the model applicability.

References

References
1.
Okamoto
,
N.
, and
Nakazawa
,
M.
,
1979
, “
Finite Element Incremental Contact Analysis With Various Frictional Conditions
,”
Int. J. Numer. Meth. Eng.
,
14
, pp.
337
357
.10.1002/nme.1620140304
2.
Oden
,
J. T.
, and
Pires
,
E.
,
1983
, “
Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity
,”
J. Appl. Mech.
,
50
(
1
), pp.
67
76
.10.1115/1.3167019
3.
Bathe
,
K. J.
, and
Chaudhary
,
A.
,
1985
, “
A Solution Method for Planar and Axisymmetric Contact Problems
,”
Int. J. Numer. Meth. Eng.
,
21
, pp.
65
88
.10.1002/nme.1620210107
4.
Zhong
,
W.
, and
Sun
,
S.
,
1989
, “
A Parametric Quadratic Programming Approach to Elastic Contact Problems With Friction
,”
Comput. Struct.
,
32
, pp.
37
43
.10.1016/0045-7949(89)90066-7
5.
Paris
,
F.
, and
Garrido
,
J.
,
1989
, “
An Incremental Procedure for Friction Contact Problems With the Boundary Element Method
,”
Eng. Anal. Bound. Elem.
,
6
, pp.
202
213
.10.1016/0955-7997(89)90019-2
6.
Lee
,
S. S.
,
1994
, “
A Computational Method for Frictional Contact Problem Using Finite Element Method
,”
Int. J. Numer. Meth. Eng.
,
37
, pp.
217
228
.10.1002/nme.1620370204
7.
Saleeb
,
A. F.
,
Chen
,
K.
, and
Chang
,
T. Y. P.
,
1994
, “
An Effective Two-Dimensional Frictional Contact Model for Arbitrary Curved Geometry
,”
Int. J. Numer. Meth. Eng.
,
37
, pp.
1297
1321
.10.1002/nme.1620370804
8.
Mahmoud
,
F. F.
,
Ali-Eldin
,
S. S.
,
Hassan
,
M. M.
, and
Emam
,
S. A.
,
1998
, “
An Incremental Mathematical Programming Model for Solving Multi-Phase Frictional Contact Problems
,”
Comput. Struct.
,
68
, pp.
567
581
.10.1016/S0045-7949(98)00093-5
9.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
,
1999
, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces
,”
Tribol. T.
,
42
(
3
), pp.
443
452
.10.1080/10402009908982240
10.
Mijar
,
A. R.
, and
Aroar
,
J. S.
,
2001
, “
A New Frictional Contact Problem Formulation Using Augmented Lagrangian Method
,”
42nd AIAA Structures, Structural Dynamics, and Materials Conference
, Seattle, WA, pp.
504
514
.
11.
Renaud
,
C.
, and
Feng
,
Z. Q.
,
2003
, “
BEM and FEM Analysis of Signorini Contact Problems With Friction
,”
Comput. Mech.
31
, pp.
390
399
.10.1007/s00466-003-0441-4
12.
Hassan
,
M. M.
, and
Mahmoud
,
F. F.
,
2004
, “
A Generalized Adaptive Incremental Approach for Solving Inequality Problems of Convex Nature
,”
Struct. Eng. Mech.
,
18
(
4
), pp.
461
474
.10.12989/sem.2004.18.4.461
13.
Mohamed
,
S. A.
,
Helal
,
M. M.
, and
Mahmoud
,
F. F.
,
2006
, “
An Incremental Convex Programming Model of the Elastic Frictional Contact Problems
,”
Struct. Eng. Mech.
23
(
4
), pp.
431
447
.10.12989/sem.2006.23.4.431
14.
Qin
,
Q. H.
, and
Wang
,
K. Y.
,
2008
, “
Application of Hybrid-Trefftz Finite Element Method to Frictional Contact Problems
,”
Comput. Assist. Mech. Eng. Sci.
,
15
, pp.
319
336
.
15.
Ahn
,
Y. J.
, and
Barber
,
J.
,
2008
, “
Response of Frictional Receding Contact Problems to Cyclic Loading
,”
Int. J. Mech. Sci.
,
50
, pp.
1519
1525
.10.1016/j.ijmecsci.2008.08.003
16.
Kanber
,
B.
, and
Demirhan
,
N.
,
2013
, “
Finite Element Analysis of Frictional Contact of Elastic Solids With Thin and Moderately Thick Coatings
,”
Turkish J. Eng. Environ. Sci.
,
37
, pp.
162
177
.
17.
Abdalla
,
W. S.
,
Ali-Eldin
,
S. S.
, and
Ghazy
,
M. R.
,
2013
, “
Modeling and Solution of Frictional Contact Problems Using Finite Element Method
,”
EJER
,
18
(
1
), pp.
25
32
.
18.
Yamada
,
Y.
,
Yoshimura
,
N.
, and
Sakurai
,
T.
,
1968
, “
Plastic Stress–Strain Matrix and Its Application for the Solution of Elastic–Plastic Problems by the Finite Element Method
,”
Int. J. Mech. Sci.
,
10
, pp.
343
354
.10.1016/0020-7403(68)90001-5
19.
Zienkiewicz
,
O.
,
Valliappan
,
S.
, and
King
,
I.
,
1969
, “
Elasto-Plastic Solutions of Engineering Problems ‘Initial Stress’, Finite Element Approach
,”
Int. J. Numer. Meth. Eng.
1
, pp.
75
100
.10.1002/nme.1620010107
20.
Dumas
,
G.
, and
Baronet
,
C.
,
1971
, “
Elastoplastic Indentation of a Half-Space by an Infinitely Long Rigid Circular Cylinder
,”
Int. J. Mech. Sci.
,
13
, pp.
519
530
.10.1016/0020-7403(71)90039-7
21.
Nagaraj
,
H. S.
,
1984
, “
Elastoplastic Contact of Bodies With Friction Under Normal and Tangential Loading
,”
J. Tribol.
,
106
, pp.
519
526
.10.1115/1.3260974
22.
Cheng
,
J.
, and
Kikuchi
,
N.
,
1985
, “
An Analysis of Metal Forming Processes Using Large Deformation Elastic–Plastic Formulations
,”
Comput. Methods Appl. Mech. Eng.
49
, pp.
71
108
.10.1016/0045-7825(85)90051-9
23.
Komvopoulos
,
K.
,
1989
, “
Elastic–Plastic Finite Element Analysis of Indented Layered Media
,”
ASME J. Tribol.
,
111
, pp.
430
439
.10.1115/1.3261943
24.
Montmitonnet
,
P.
,
Edlinger
,
M.
, and
Felder
,
E.
,
1993
, “
Finite Element Analysis of Elastoplastic Indentation. I: Homogeneous Media
,”
ASME J. Tribol.
,
115
(1), pp.
10
14
.10.1115/1.2920962
25.
Zhu
,
C.
,
1995
, “
A Finite Element-Mathematical Programming Method for Elastoplastic Contact Problems With Friction
,”
Finite Elem. Anal. Design
,
20
, pp.
273
282
.10.1016/0168-874X(95)00034-Q
26.
Kogut
,
L.
, and
Etsion
,
I.
2002
, “
Elastic–Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(5), pp.
657
662
.10.1115/1.1490373
27.
Sheng
,
D.
,
Wriggers
,
P.
, and
Sloan
,
S. W.
,
2006
, “
Improved Numerical Algorithms for Frictional Contact in Pile Penetration Analysis
,”
Comput. Geotech.
,
33
, pp.
341
354
.10.1016/j.compgeo.2006.06.001
28.
Jackson.
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
, pp.
906
914
.10.1016/j.triboint.2005.09.001
29.
Vijaywargiya
,
R.
, and
Green
,
I.
,
2007
, “
A Finite Element Study of the Deformations, Forces, Stress Formations, and Energy Losses in Sliding Cylindrical Contacts
,”
Int. J. Nonlinear Mech.
,
42
, pp.
914
927
.10.1016/j.ijnonlinmec.2007.03.017
30.
Anahid
,
M.
, and
Khoei
,
A.
,
2008
, “
New Development in Extended Finite Element Modeling of Large Elasto-Plastic Deformations
,”
Int. J. Numer. Meth. Eng.
,
75
, pp.
1133
1171
.10.1002/nme.2281
31.
Chen
,
W. W.
,
Wang
,
Q.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(2), p.
021021
.10.1115/1.2755171
32.
Chen
,
W. W.
, and
Wang
,
Q.
,
2009
, “
A Numerical Static Friction Model for Spherical Contacts of Rough Surfaces, Influence of Load, Material, and Roughness
,”
ASME J. Tribol.
,
131
(2), p.
021402
.10.1115/1.3063814
33.
Chen
,
W. W.
,
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2010
, “
Modeling Elasto-Plastic Indentation on Layered Materials Using the Equivalent Inclusion Method
,”
Int. J. Solids Struct.
,
47
, pp.
2841
2854
.10.1016/j.ijsolstr.2010.06.011
34.
Adam
,
C. J.
, and
Swain
,
M. V.
,
2011
, “
The Effect of Friction on Indenter Force and Pile-Up in Numerical Simulations of Bone Nanoindentation
,”
J. Mech. Behav. Biomed.
,
4
, pp.
1554
1558
.10.1016/j.jmbbm.2011.03.026
35.
Boudaia
,
E. H.
,
Bousshine
,
L.
, and
Chaaba
,
A.
,
2012
, “
Solving Frictional Contact Problems Within the Bipotential Framework
,”
Key Eng. Mater.
,
498
, pp.
55
66
.10.4028/www.scientific.net/KEM.498.55
36.
Chatterjee
,
B.
, and
Sahoo
,
P.
,
2012
, “
Effect of Strain Hardening on Elastic–Plastic Contact of a Deformable Sphere Against a Rigid Flat Under Full Stick Contact Condition
,”
Adv. Tribol.
,
2012
, pp.
1
8
.10.1155/2012/472794
37.
Weyler
,
R.
,
Oliver
,
J.
,
Sain
,
T.
, and
Cante
,
C. J.
,
2012
, “
On the Contact Domain Method: A Comparison of Penalty and Lagrange Multiplier Implementations
,”
Comput. Methods Appl. Mech. Eng.
,
205–208
, pp.
68
82
.10.1016/j.cma.2011.01.011
38.
Kumar
,
A.
,
Staedler
,
T.
, and
Jiang
,
X.
,
2013
, “
Effect of Normal Load and Roughness on the Nanoscale Friction Coefficient in the Elastic and Plastic Contact Regime
,”
Bellstein J. Nanotechnol.
,
4
, pp.
66
71
.10.3762/bjnano.4.7
39.
Poulios
,
K.
, and
Klit
,
P.
,
2013
, “
Implementation and Applications of a Finite-Element Model for the Contact Between Rough Surfaces
,”
Wear
,
303
, pp.
1
8
.10.1016/j.wear.2013.02.024
40.
Holmberg
,
K.
,
Matthews
,
A.
, and
Ronkainen
,
H.
,
1998
, “
Coatings tribology—Contact Mechanisms and Surface Design
,”
Tribol. Int.
,
31
, pp.
107
120
.10.1016/S0301-679X(98)00013-9
41.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction: Physical Principles and Applications
,
Springer
,
New York
.
42.
Mendelson
,
A.
,
1968
,
Plasticity: Theory and Application
,
2nd ed.
,
Macmillan
,
New York
.
43.
Johnson
,
K. L.
,
1992
,
Contact Mechanics
,
3rd ed.
,
Cambridge University Press
,
Cambridge, UK
.
44.
Boyer
,
H. E.
,
1987
,
Atlas of Stress-Strain Curves
,
ASM International
,
Metal Park, OH
.
You do not currently have access to this content.