Minimizing the clearance between turbofan blades and the surrounding casing is a key factor to achieving compressor efficiency. The deposition of an abradable coating on casings is one of the technologies used to reduce this blade-casing clearance and ensure blade integrity in the event of blade-casing contact. Aircraft in-service conditions may lead to interactions between the blade tip and the coated casing, during which wear of the abradable coating, blade dynamics, and interacting force are critical yet little-understood issues. In order to study blade/abradable-coating interactions of a few tens of milliseconds, experiments were conducted on a dedicated test rig. The experimental data were analyzed with the aim of determining the friction-induced vibrational modes of the blade. This involved a time-frequency analysis of the experimental blade strain using continuous wavelet transform (CWT) combined with a modal analysis of the blade. The latter was carried out with two kinds of kinematic boundary conditions at the blade tip: free and modified, by imposing contact with the abradable coating. The interaction data show that the blade vibration modes identified during interactions correspond to the free boundary condition due to the transitional nature of the phenomena and the very short duration of contacts. The properties of the continuous wavelet transform were then used to identify the occurrence of blade-coating contact. Two kinds of blade/abradable-coating interactions were identified: bouncing of the blade over short time periods associated with loss of abradable material and isolated contacts capable of amplifying the blade vibrations without causing significant wear of the abradable coating. The results obtained were corroborated by high-speed imaging of the interactions.

References

1.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrenoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contacts Experiments
,”
Proceedings of the ASME IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2,
ASME
Paper No. DETC2009-86842, pp. 855–862.10.1115/DETC2009-86842
2.
Sutter
,
G.
,
Philippon
,
S.
, and
Garcin
,
F.
,
2006
, “
Dynamic Analysis of the Interaction Between an Abradable Material and a Titanium Alloy
,”
Wear
,
261
, pp.
686
692
.10.1016/j.wear.2006.01.030
3.
Cuny
,
M.
,
Philippon
,
S.
,
Chevrier
,
P.
, and
Garcin
,
F.
,
2011
, “
Etude Expérimentale des Interactions Dynamiques Aube/Carter
,”
Proceedings of 20e Congrès Français de Mécanique
, France (in French).
4.
Stringer
,
J.
, and
Marshall
,
M. B.
,
2012
, “
High Speed Wear Testing of an Abradable Coating
,”
Wear
,
294–295
, pp.
257
263
.10.1016/j.wear.2012.07.009
5.
Fois
,
N.
,
Stringer
,
J.
, and
Marshall
,
M. B.
,
2013
, “
Adhesive Transfer in Aero-Engine Abradable Linings Contact
,”
Wear
,
304
, pp.
202
210
.10.1016/j.wear.2013.04.033
6.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
,
Manwaring
,
S.
,
Young
,
G.
,
Adams
,
M.
, and
Adams
,
M.
,
2005
, “
Development of an Experimental Capability to Produce Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
127
(4), pp.
726
735
.10.1115/1.1934429
7.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
, and
Manwaring
,
S.
,
2007
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(4), pp.
713
723
.10.1115/1.2720869
8.
Schmid
,
R. K.
,
1997
, “
New High Temperature Abradables for Gas Turbines
,” Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.
9.
Bounazef
,
M.
,
Guessasma
,
S.
, and
Ait Saadi
,
B.
,
2004
, “
The Wear, Deterioration and Transformation Phenomena of Abradable Coating BN-SiAl-Bounding Organic Element, Caused by the Friction Between the Blades and the Turbine Casing
,”
Mater. Lett.
,
58
, pp.
3375
3380
.10.1016/j.matlet.2004.02.049
10.
Baïz
,
S.
,
Fabis
,
J.
,
Boidin
,
X.
, and
Desplanques
,
Y.
,
2013
, “
Experimental Investigation of the Blade/Seal Interaction
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
227
(
9
), pp.
980
995
.10.1177/1350650112472853
11.
Kascak
,
A. F.
, and
Tomko
,
J. J.
,
1984
, “
Effects of Different Rub Models on Simulated Rotor Dynamics
,” NASA Technical Paper No. 2220, AVSCOM Technical Report No. 83-C-8.
12.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Nouri Baranger
,
T.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
P.
,
Almeida
,
P.
, and
Palatan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines. Review and Application
,”
Mech. Syst. Signal Proc.
,
40
, pp.
401
420
.10.1016/j.ymssp.2013.05.010
13.
Johnston
,
R. E.
,
2011
, “
Mechanical Characterisation of AlSi-hBN, NiCrAl-Bentonite, and NiCrAl-Bentonite-hBN Freestanding Abradable Coatings
,”
Surf. Coat. Technol.
,
205
, pp.
3268
3273
.10.1016/j.surfcoat.2010.11.044
14.
Krajcin
,
I.
, and
Söffker
,
D.
,
2003
, “
Model-Based Estimation of Contact Forces in Rotating Machines
,”
Proceedings of 4th IMACS Symposium on Mathematical Modeling
, Vienna, Austria.
15.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(8), p.
082504
.10.1115/1.4006446
16.
Al-Badour
,
F.
,
Sunar
,
M.
, and
Cheded
,
L.
,
2011
, “
Vibration Analysis of Rotating Machinery Using Time-Frequency Analysis and Wavelet Techniques
,”
Mech. Syst. Signal Proc.
,
25
, pp.
2083
2101
.10.1016/j.ymssp.2011.01.017
17.
Laverty
,
W. F.
,
1982
, “
Rub Energetics of Compressor Blade Tip Seals
,”
Wear
,
75
, pp.
1
20
.10.1016/0043-1648(82)90137-5
18.
Petitniot
,
J.-L.
,
Des Rochettes
,
H.-M.
, and
Leconte
,
P.
,
2002
, “
Experimental Assessment and Further Development of Amplified Piezo Actuators for Active Flap Devices
,”
Proceedings of the 8th International Conference on New Actuators
, ACTUATOR 2002, Germany.
19.
Wolak
,
J.
,
Emery
,
A. F.
,
Etemad
,
S.
, and
Choi
,
S. R.
,
1984
, “
Blade Tip Geometry—A Factor in Abrading Sintered Seal Material
,”
ASME J. Tribol.
,
106
(4), pp.
527
533
.10.1115/1.3260976
20.
Olympio
,
R. K.
, and
Poulin-Vittrant
,
G.
,
2011
, “
A Honeycomb-Based Piezoelectric Actuator for a Flapping Wing MAV
,”
Proc. SPIE
,
7977
,
79771U
.10.1117/12.877073
21.
Sinou
,
J. J.
,
2009
, “
An Experimental Investigation of Condition Monitoring for Notched Rotors Through Transient Signals and Wavelet Transform
,”
Exp. Mech.
,
49
, pp.
683
695
.10.1007/s11340-008-9193-6
22.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Amer. Meteorol. Soc.
,
79
, pp.
61
78
.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
23.
Farge
,
M.
,
1992
, “
Wavelet Transforms and Their Applications to Turbulence
,”
Annu. Rev. Fluid Mech.
,
24
, pp.
395
457
.10.1146/annurev.fl.24.010192.002143
24.
Meyers
,
S. D.
,
Kelly
,
B. G.
, and
O'Brien
,
J. J.
,
1993
, “
An Introduction to Wavelet Analysis in Oceanography and Meteorology: With Application to the Dispersion of Yanai Waves
”,
Mon. Wea. Rev.
,
121
, pp.
2858
2866
.10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2
25.
The Scipy Community,
2013
, “
NumPy Reference
,” http://docs.scipy.org/doc/numpy/reference
You do not currently have access to this content.