This work investigates the effect of various assumptions proposed by the classical Reynolds lubrication equation. In particular, a microplate oscillating at high frequencies (beyond cutoff) and high velocities leading to appreciable displacement within the film gap is studied. An analytical model is derived with special emphasis on the fluid's inertia effect on the fluid/solid interface. By implementing the direct simulation Monte Carlo (DSMC) method, a numerical method for modeling rarefied gas flow, the analytically based model is adjusted for the force exerted by the gas on the oscillating micro-structure to capture various significant effects related to the fluid's inertia, compressibility, stiffness, and damping.

References

References
1.
Blech
,
J.
,
1983
, “
On Isothermal Squeeze Films
,”
J. Lubr. Technol.
,
105
, pp.
615
620
.10.1115/1.3254692
2.
Andrews
,
M.
,
Harm
,
I.
, and
Turner
,
G.
,
1993
, “
A Comparison of Squeeze-Film Theory With Measurements on a Microstructure
,”
Sens. Actuators, A
,
36
, pp.
79
87
.10.1016/0924-4247(93)80144-6
3.
Zook
,
J.
,
Bums
,
D.
,
Guckel
,
H.
,
Snlegowski
,
J.
,
Engelstad
,
R.
, and
Feng
,
Z.
,
1992
, “
Characteristics of Polysilicon Resonant Microbeams
,”
Sens. Actuators, A
,
35
, pp.
51
59
.10.1016/0924-4247(92)87007-4
4.
Christian
,
R.
,
1966
, “
The Theory of Oscillating-Vane Vacuum Gauges
,”
Vacuum
,
16
, pp.
175
178
.10.1016/0042-207X(66)91162-6
5.
Newell
,
W.
,
1968
, “
Miniaturization of Tuning Forks
,”
Science
,
161
, pp.
1320
1326
.10.1126/science.161.3848.1320
6.
Hutcherson
,
S.
and
Ye
,
W.
,
2004
, “
On the Squeeze-Film Damping of Micro-Resonators in the Free-Molecule Regime
,”
J. Micromech. Microeng.
,
14
, pp.
1726
1733
.10.1088/0960-1317/14/12/018
7.
Bao
,
M.
,
Yang
,
H.
,
Yin
,
H.
, and
Sun
,
Y.
,
2002
, “
Energy Transfer Model for Squeeze-Film Air Damping in Low Vacuum
,”
J. Micromech. Microeng.
,
12
, pp.
341
346
.10.1088/0960-1317/12/3/322
8.
Blom
,
F.
,
Bouwstra
,
S.
,
Elwenspoek
,
M.
, and
Fluitman
,
J.
,
1992
, “
Dependence of the Quality Factor of Micromachined Silicon Beam Resonators on Pressure and Geometry
,”
J. Vac. Sci. Technol. B
,
10
(
1
), pp.
19
26
.10.1116/1.586300
9.
Li
,
P.
and
Fang
,
Y.
,
2010
, “
A Molecular Dynamics Simulation Approach for the Squeeze-Film Damping of MEMS Devices in the Free Molecular Regime
,”
J. Micromech. Microeng.
,
20
, p.
035005
.10.1088/0960-1317/20/3/035005
10.
Bao
,
M.
,
Sun
,
Y.
,
Zhou
,
J.
, and
Huang
,
Y.
,
2006
, “
Squeeze-Film Air Damping of a Torsion Mirror at a Finite Tilting Angle
,”
J. Micromech. Microeng.
,
16
, pp.
2330
2335
.10.1088/0960-1317/16/11/012
11.
Langlois
,
W. E.
,
1962
, “
Isothermal Squeeze Films
,”
Q. Appl. Math.
,
20
, pp.
131
150
.
12.
Starr
,
J. B.
,
1990
, “
Squeeze-Film Damping in Solid-State Accelerometers
,”
Technical Digest IEEE Solid State Sensor and Actuator Workshop
, Hilton Head Island, SC, pp.
44
47
.
13.
Veijola
,
T.
,
Tinttunen
,
T.
,
Nieminen
,
H.
,
Ermolov
,
V.
, and
Ryhnen
,
T.
,
2002
, “
Gas Damping Model for an RF MEM Switch and Its Dynamic Characteristics
,”
Proceedings of International Microwave Symposium (IMS)
, Seattle, WA, pp.
1213
1216
.
14.
Li
,
P.
,
Hu
,
R.
, and
Fang
,
Y.
,
2007
, “
A New Model for Squeeze-Film Damping of Electrically Actuated Microbeams Under the Effect of a Static Deflection
,”
J. Micromech. Microeng.
,
17
, pp.
1242
1251
.10.1088/0960-1317/17/7/005
15.
Younis
,
M.
and
Nayfeh
,
A.
,
2007
. “
Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,”
ASME J Comput. Nonlinear Dyn.
,
2
, pp.
232
241
.10.1115/1.2727491
16.
Sumali
,
H.
,
2007
, “
Squeeze-Film Damping in the Free Molecular Regime: Model Validation and Measurement on a MEMS
,”
J. Micromech. Microeng.
,
17
, pp.
2231
2240
.10.1088/0960-1317/17/11/009
17.
Mol
,
L.
,
Rocha
,
L.
,
Cretu
,
E.
, and
Wolffenbuttel
,
R.
,
2009
, “
Squeezed Film Damping Measurements on a Parallel-Plate MEMS in the Free Molecule Regime
,”
J. Micromech. Microeng.
,
19
, p.
074021
.10.1088/0960-1317/19/7/074021
18.
Zhang
,
B.
and
Fang
,
D.
,
2009
, “
Modeling and Modification of the Parallel Plate Variable Mems Capacitors Considering Deformation Issue
,”
Mech. Mach. Theory
,
44
, pp.
647
655
.10.1016/j.mechmachtheory.2008.12.006
19.
Niessner
,
M.
,
Schrag
,
G.
,
Wachutka
,
G.
,
Iannacci
,
J.
,
Reutter
,
T.
, and
Mulatz
,
H.
,
2009
), “
Non-Linear Model for the Simulation of Viscously Damped RF-MEMS Switches at Varying Ambient Pressure Conditions
,”
Proceedings of the Eurosensors XXIII Conference
, Procedia Chem.
1
, pp.
618
621
.
20.
Sumali
,
H.
and
Carne
,
T.
,
2008
, “
Air Damping on Micro-Cantilever Beams
,”
Proceedings of the International Modal Analysis Conference
.
21.
Hosaka
,
H.
,
Itao
,
K.
, and
Kuroda
,
S.
,
1995
, “
Damping Characteristics of Beam-Shaped Micro-Oscillators
,”
Sens. Actuators, A
,
49
, pp.
87
95
.10.1016/0924-4247(95)01003-J
22.
Kokubun
,
K.
,
Hirata
,
M.
,
Murakami
,
H.
,
Toda
,
Y.
, and
Ono
,
M.
,
1984
, “
A Bending and Stretching Mode Crystal Oscillator as a Friction Vacuum Gauge
,”
Vacuum
,
34
, pp.
731
735
.10.1016/0042-207X(84)90318-X
23.
Veijola
,
T.
,
2004
, “
Compact Models for Squeezed-Film Dampers With Inertial and Rarefied Gas Effects
,”
J. Micromech. Microeng.
,
14
, pp.
1109
1118
.10.1088/0960-1317/14/7/034
24.
Gallis
,
M.
and
Torczynski
,
J.
,
2004
, “
An Improved Reynolds-Equation Model for Gas Damping of Microbeam Motion
,”
J. Microelectromech. Syst.
,
13
(
4
), pp.
653
659
.10.1109/JMEMS.2004.832194
25.
Lee
,
J.
,
Tung
,
R.
,
Raman
,
A.
,
Sumali
,
H.
, and
Sullivan
,
J.
,
2009
, “
Squeeze-Film Damping of Flexible Microcantilevers at Low Ambient Pressures: Theory and Experiment
,”
J. Micromech. Microeng.
,
19
, p.
105029
.10.1088/0960-1317/19/10/105029
26.
Guo
,
X.
and
Alexeenko
,
A.
,
2009
, “
Compact Model of Squeeze-Film Damping Based on Rarefied Flow Simulations
,”
J. Micromech. Microeng.
,
19
, p.
045026
.10.1088/0960-1317/19/4/045026
27.
Diab
,
N.
and
Lakkis
,
I.
,
2012
, “
DSMC Simulations of Squeeze Film Between a Micro Beam Undergoing Large Amplitude Oscillations and a Substrate
,”
Proceedings of the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM)
, Puerto Rico.
28.
Diab
,
N.
and
Lakkis
,
I.
,
2012
, “
DSMC Simulations of Squeeze Film Under a Harmonically Oscillating Micro RF Switch With Large Tip Displacements
,”
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition
, Houston, TX.
29.
Griffin
,
W. S.
,
Richardson
,
H. H.
, and
Yamanami
,
S.
,
1966
, “
A Study of Fluid Squeeze-Film Damping
,”
ASME, J. Basic Eng.
,
88
(
2
), pp.
451
456
.10.1115/1.3645878
30.
Senturia
,
S.
,
2004
,
Microsystem Design
,
Springer
,
New York
.
You do not currently have access to this content.