A very useful model for predicting abrasive wear is the linear wear law based on the Rabinowicz's equation. This equation assumes that the removed volume of the abraded material is inversely proportional to its hardness. This paper focuses on the stochastic modeling of the abrasive wear process, taking into account the experimental uncertainties in the identification process of the worn material hardness. The description of hardness is performed by means of the maximum entropy principle (MEP) using only the information available. Propagation of the uncertainties from the data to the volume of wear produced is analyzed. Moreover, comparisons and discussions with other probabilistic models for worn material hardness usually proposed in the literature are done.

References

References
1.
Tonn
,
W.
,
1937
, “
Beitrag zur Kenntnis des Verschleissvorganges beim Kurzversuck
,”
Z. Meta Ukd.
,
29
, pp.
196
198
.
2.
Khruschov
,
M. M.
, and
Babichev
,
M. A.
,
1956
, “
An Investigation of the Wear of Metals and Alloys by Rubbing on an Abrasive Surface
,”
ASME Friction Wear Mach.
,
11
, pp.
1
12
.
3.
Bahadur
,
S.
,
1978
, “
Wear Research and Development
,”
ASME J. Lubr. Technol.
,
100
(4), pp.
449
454
.10.1115/1.3453249
4.
Rabinowicz
,
E.
,
Dunn
,
L. A.
, and
Russell
,
P. G.
,
1961
, “
A Study of Abrasive Wear Under Three-Body Conditions
,”
Wear
,
4
, pp.
345
355
.10.1016/0043-1648(61)90002-3
5.
Khruschov
,
M. M.
,
1974
, “
Principles of Abrasive Wear
,”
Wear
,
28
, pp.
69
88
.10.1016/0043-1648(74)90102-1
6.
Pintaude
,
G.
,
Tanaka
,
D.
, and
Sinatora
,
A.
,
2003
, “
The Effects of Abrasive Particle Size on the Sliding Friction Coefficient of Steel Using a Spiral Pin-on-Disk Apparatus
,”
Wear
,
255
(
1-6
), pp.
55
59
.10.1016/S0043-1648(03)00212-6
7.
Factor
,
M.
, and
Roman
, I
.
,
2002
, “
Use of Microhardness as a Simple Means of Estimating Relative Wear Resistance of Carbide Thermal Spray Coatings: Part 1. Characterization of Cemented Carbide Coatings
,”
J. Therm. Spray Techn.
,
11
(
4
), pp.
468
481
.10.1361/105996302770348600
8.
Factor
,
M.
, and
Roman
, I
.
,
2002
, “
Use of Microhardness as a Simple Means of Estimating Relative Wear Resistance of Carbide Thermal Spray Coatings: Part 2. Wear Resistance of Cemented Carbide Coatings
,”
J. Therm. Spray Techn.
,
11
(
4
), pp.
482
495
.10.1361/105996302770348619
9.
Rabinowicz
,
E.
,
1983
, “
The Wear of Hard Surfaces by Soft Abrasives
,”
Wear of Materials: International Conference on Wear of Materials
,
K. C.
Ludema
, ed.,
ASME
,
New York
, pp.
12
18
.
10.
Schneider
,
J.-M.
,
Bigerelle
,
M.
, and
Iost
,
A.
,
1999
, “
Statistical Analysis of the Vickers Hardness
,”
Mater. Sci. Eng. A
,
262
, pp.
256
263
.10.1016/S0921-5093(98)01000-4
11.
Wang
,
J.
,
Zhai
,
C.-S.
,
Yang
,
Y.
, and
Sun
,
B.-D.
,
2006
, “
Vickers Microindentation and Statistical Analysis of Microhardness of Detonation Sprayed Nanocomposite Al2O3-TiO2 Coatings
,”
J. Compos. Mater.
,
40
, pp.
943
953
.10.1177/0021998305056383
12.
Cataldo
,
E.
,
Soize
,
C.
, and
Sampaio
,
R.
,
2013
, “
Uncertainty Quantification of Voice Signal Production Mechanical Model and Experimental Updating
,”
Mech. Syst. Signal Process.
,
40
, pp.
718
726
.10.1016/j.ymssp.2013.06.036
13.
Dorini
,
F. A.
, and
Sampaio
,
R.
,
2012
, “
Some Results on the Random Wear Coefficient of the Archard Model
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051008
.10.1115/1.4006453
14.
Bryant
,
M. D.
,
Khonsari
,
M. M.
, and
Ling
,
F. F.
,
2008
, “
On the Thermodynamics of Degradation
,”
Proc. R. Soc. London A
,
464
, pp.
2001
2014
.10.1098/rspa.2007.0371
15.
Nosonovsky
,
M.
,
2010
, “
Entropy in Tribology: In the Search for Applications
,”
Entropy
,
12
, pp.
1345
1390
.10.3390/e12061345
16.
Doelling
,
K. L.
,
Ling
,
F. F.
,
Bryant
,
M. D.
, and
Heilman
,
B. P.
,
2000
, “
An Experimental Study of the Correlation Between Wear and Entropy Flow in Machinery Components
,”
J. Appl. Phys.
,
88
, pp.
2999
3003
.10.1063/1.1287778
17.
Naderi
,
M.
,
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
On the Thermodynamic Entropy of Fatigue Fracture
,”
Proc. R. Soc. London A
,
466
, pp.
423
438
.10.1098/rspa.2009.0348
18.
Amiri
,
M.
,
Khonsari
,
M. M.
, and
Brahmeshwarkar
,
S.
,
2012
, “
An Application of Dimensional Analysis to Entropy-Wear Relationship
,”
ASME J. Tribol.
,
134
(1),
p. 011604
.10.1115/1.4003765
19.
Shannon
,
C. E.
, and
Weaver
,
W.
,
1949
,
The Mathematical Theory of Communication
,
University of Illinois
,
Urbana, IL
.
20.
Conrad
,
K.
,
2013
, “
Probability Distributions and Maximum Entropy
,” retrieved November 14, 2013. Available at: http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
21.
Jaynes
,
E.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.10.1103/PhysRev.106.620
22.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics II
,”
Phys. Rev.
,
108
(
2
), pp.
171
190
.10.1103/PhysRev.108.171
23.
Papoulis
,
A.
,
1984
,
Probability, Random Variables, and Stochastic Processes
,
2nd ed.
,
McGraw-Hill
,
New York
.
24.
Kapur
,
J. N.
, and
Kesavan
,
H. K.
,
1992
,
Entropy Optimization Principle With Applications
,
Academic
,
San Diego, CA
.
25.
Soize
,
C.
,
2001
, “
Maximum Entropy Approach for Modelling Random Uncertainties in Transient Elastodynamics
,”
J. Acoust. Soc. Am.
,
109
(
5
), pp.
1979
1996
.10.1121/1.1360716
26.
Chevalier
,
L.
,
Cloupet
,
S.
, and
Soize
,
C.
,
2005
, “
Probabilistic Model for Random Uncertainties in Steady State Rolling Contact
,”
Wear
,
258
, pp.
1543
1554
.10.1016/j.wear.2004.11.012
27.
Udwadia
,
F. E.
,
1989
, “
Some Results on Maximum Entropy Distributions for Parameters Known to Lie in Finite Intervals
,”
Siam Rev.
,
31
(
1
), pp.
103
109
.10.1137/1031004
28.
Bozzi
,
A. C.
, and
Mello
,
J. D. B.
,
1999
, “
Wear Resistance and Wear Mechanisms of WC-12/100Co Thermal Sprayed Coatings in Three-Body Abrasion
,”
Wear
,
233-235
, pp.
575
587
.10.1016/S0043-1648(99)00206-9
You do not currently have access to this content.