In this paper, a compensation method of nonlinear friction using on-line input estimation (IE) method is developed. To illustrate the validity and performance of the proposed algorithm applied to positioning system, comparisons with the results using the Gomonwattanapanich method and robustness analysis are performed. The simulation result shows that the estimated friction torque does not need any assumption in the pattern of friction model in advance, the proposed algorithm has consistent robustness to diverse friction characteristics, and the method can significantly improve the performance of a control system.

References

References
1.
Walrath
,
C. D.
,
1984
, “
Adaptive Gearing Friction Compensation Based on Recent Knowledge of Dynamic Friction
,”
Automatica
,
20
, pp.
727
727
.10.1016/0005-1098(84)90081-5
2.
Gomes
,
S. C. P.
, and
Chretien
,
J. P.
,
1992
, “
Dynamic Modelling and Friction Compensated Control of a Robot Manipulator Joint
,”
IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1429
1435
.
3.
Leonard
,
N. E.
, and
Krishnaprasad
,
P. S.
,
1992
, “
Adaptive Friction Compensation for Bi-Directional Low-Velocity Position Tracking
,”
Proceedings of the 31st IEEE Conference on Decision and Control
, pp.
267
273
.
4.
Dahl
,
P. R.
,
1977
, “
Measurement of Solid Friction Parameters of Ball Bearings
,”
Proceedings of the 6th Annual Symposium on Incremental Motion Control and Device
, pp.
49
60
.
5.
Canudas de Wit
,
C.
,
Olsson
,
H.
, and
Astrom
,
K. J.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
6.
Low
,
T.
,
Lee
,
T.
, and
Lim
,
H.
,
1993
, “
A Methodology for Neural Network Training for Control of Drives With Nonlinearities
,”
IEEE Trans. Ind. Electron.
,
40
(
2
), pp.
243
249
.10.1109/41.222646
7.
Kiguchi
,
K.
, and
Fukuda
,
T.
,
1996
, “
Fuzzy Neural Friction Compensation Method of Robot Manipulation During Position/Force Control
,”
IEEE International Conference Robotics and Automation
,
1
, pp.
372
377
.
8.
Ray
,
L. R.
,
Ramasubramanian
,
A.
, and
Townsend
,
J.
,
2001
, “
Adaptive Friction Compensation Using Extended Kalman-Bucy Filter Friction Estimation
,”
Control Eng. Pract.
,
9
, pp.
169
179
.10.1016/S0967-0661(00)00104-0
9.
Gomonwattanapanich
,
O.
,
Pattanapukdee
,
A.
, and
Mongkolwongrojn
,
M.
,
2006
, “
Compensation and Estimation of Friction by Using Extended Kalman Filter
,”
SICE-ICASE, 2006. International Joint Conference
, pp.
5032
5035
.
10.
Fitzgerald
,
R. J.
,
1971
, “
Divergence of the Kalman Filter
,”
IEEE Trans. Autom. Control
, 16(6) pp.
736
747
.10.1109/TAC.1971.1099836
11.
Chan
,
Y. B.
,
Hu
,
A. G. C. P.
, and
Plant
,
J. B.
,
1979
, “
A Kalman Filter Based Tracking Scheme With Input Estimation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-15
, pp.
237
244
.10.1109/TAES.1979.308710
12.
Tuan
,
P. C.
,
Ji
,
C. C.
, and
Fong
,
L. W.
,
1996
, “
An Input Estimation Approach to on-Line Two-Dimensional Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
29
(
3
), pp.
345
363
.10.1080/10407799608914986
13.
Tuan
,
P. C.
,
Fong
,
L. W.
, and
Huang
,
W. T.
,
1997
, “
Application of Kalman Filtering With Input Estimation Technique to On-Line Cylindrical Inverse Heat Conduction Problems
,”
Int. J. Japanese Soc. Mech. Eng., Series B
,
40
(
1
), pp.
126
133
.10.1299/jsmeb.40.126
14.
Ji
,
C. C.
,
Tuan
,
P. C.
, and
Jang
,
H. Y.
,
1997
, “
A Recursive Least-Squares Algorithm for Online 1-D Inverse Heat-Conduction Estimation
,”
Int. J. Heat Mass Trans.
,
40
(
9
), pp.
2081
2096
.10.1016/S0017-9310(96)00289-X
15.
Jang
,
H. Y.
,
2008
, “
Innovative Optimal Control Methodology of Heat Dissipation in Electronic Devices
,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
563
571
.10.2514/1.25723
16.
Jang
,
H. Y.
, and
Cheng
,
C. H.
,
2009
, “
Nonlinear Optimal on-Line Heat-Dissipation Control Methodology in Electronic Devices
,”
Int. J. Heat Mass Trans.
,
52
, pp.
2049
2058
.10.1016/j.ijheatmasstransfer.2008.11.002
17.
Burl
,
J. B.
,
1998
,
Linear Optimal Control: H2 and H∞ Methods, Linear Quadratic Gaussian Control
,
Addison Wesley
,
Reading, MA
, pp.
280
310
.
18.
Armstrong-Helouvry
,
B.
,
Dupont
,
P.
, and
de Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
You do not currently have access to this content.