In the present work, nanoindentation experiments were carried out to characterize the localized transfer film layer (TFL) on a steel disk, which resulted from a sliding contact of the latter against a polymer composite pin. It was found that the hybrid nanocomposites filled with both nanoparticles and traditional tribo-fillers were more effective to form durable TFLs on the steel counterpart, associated with desirable tribological properties of the sliding system, i.e., a low friction coefficient and a low wear rate. By studying the load-displacement behavior of polymeric TFLs on metallic substrates, the thickness of TFLs could be estimated, thus, allowing the comparison of TFLs formed under different sliding conditions in a quantitative way. Based on the experimental data, the effects of TFLs on the tribological performance of polymer composites were further discussed in terms of a “transfer film efficiency factor” λ, which was calculated by the ratio of the average thickness of the TFL to the surface roughness of the steel counterpart. The factor mainly considered the relative contributions of the TFL and the metallic counterface to the wear process of the polymer-on-metal system. Accordingly, the wear rate and the friction coefficient of the sliding system could be analyzed as a function of the transfer film efficiency factor, resulting in a Stribeck type diagram. The analyses provided new insight into the role of TFLs in polymer tribology.

References

References
1.
Friedrich
,
K.
,
Chang
,
L.
, and
Haupert
,
F.
,
2011
, “
Current and Future Applications of Polymer Composites in the Field of Tribology
,”
Composite Materials: A Vision for the Future
,
L.
Nikolais
,
M.
Meo
, and
E.
Miella
, eds.,
Springer
,
Berlin
, pp.
129
167
.
2.
Tanaka
,
K.
,
1982
, “
Transfer of Semicrystalline Polymers Sliding Against a Smooth Steel Surface
,”
Wear
,
75
, pp.
183
199
.10.1016/0043-1648(82)90147-8
3.
Jacko
,
M. G.
,
Tsang
,
P. H. S.
, and
Rhee
,
S. K.
,
1989
, “
Wear Debris Compaction and Friction Film Formation of Polymer Composites
,”
Wear
,
133
(
1
), pp.
23
38
.10.1016/0043-1648(89)90110-5
4.
Yang
,
E. L.
,
Hirvonen
,
J. P.
, and
Toivanen
,
R. O.
,
1991
, “
Effect of Temperature on the Transfer Film Formation in Sliding Contact of PTFE With Stainless Steel
,”
Wear
,
146
, pp.
367
376
.10.1016/0043-1648(91)90075-6
5.
Bahadur
,
S.
, and
Schwartz
,
C. J.
,
2008
, “
The Influence of Nanoparticle Fillers in Polymer Matrices on the Formation and Stability of Transfer Film During Wear
,”
Tribology of Polymeric Nanocomposites
,
K.
Friedrich
and
A. K.
Schlarb
, eds.,
Elsevier
,
New York
, pp.
17
34
.
6.
Higgs
,
C. F.
, III
, and
Wornyoh
,
E. Y. A.
,
2008
, “
An in Situ Mechanism for Self-Replenishing Powder Transfer Films: Experiments and Modelling
,”
Wear
,
264
, pp.
131
138
.10.1016/j.wear.2007.03.026
7.
Dougherty
,
P. S. M.
,
Pudjoprawoto
,
R.
, and
Higgs
,
C. F.
,
2011
, “
An Investigation of the Wear Mechanism Leading to Self-Replenishing Transfer Films
,”
Wear
,
272
, pp.
122
132
.10.1016/j.wear.2011.08.002
8.
Bahadur
,
S.
,
2000
, “
The Development of Transfer Layers and Their Role in Polymer Tribology
,”
Wear
,
245
, pp.
92
99
.10.1016/S0043-1648(00)00469-5
9.
Friedrich
,
K.
,
1993
, “
Wear Models for Multiphase Materials and Synergistic Effects in Polymeric Hybrid Composites
,”
Advances in Composite Tribology
,
K.
Friedrich
, ed.,
Elsevier
,
New York
, pp.
209
273
.
10.
Friedrich
,
K.
,
Zhang
,
Z.
, and
Klein
,
P.
,
2005
, “
Wear of Polymer Composites
,”
Wear: Materials, Mechanisms and Practice
,
G.W.
Stachowiak
, ed.,
Wiley
, pp.
269
290
.
11.
Chang
,
L.
,
Zhang
,
Z.
,
Ye
,
L.
, and
Friedrich
,
K.
,
2007
, “
Tribological Properties of Epoxy Nanocomposites: III Characteristics of Transfer Film
,”
Wear
,
262
, pp.
699
706
.10.1016/j.wear.2006.08.002
12.
Jönsson
,
B.
, and
Hogmark
,
S.
,
1984
, “
Hardness Measurement of Thin Films
,”
Thin Solid Films
,
114
, pp.
257
269
.10.1016/0040-6090(84)90123-8
13.
Tsui
,
T. Y.
,
Vlassak
,
J.
, and
Nix
,
W. D.
,
1999
, “
Indentation Plastic Displacement Field: Part I. The Case of Soft Films on Hard Substrates
,”
J. Mater. Res.
,
14
(
6
), pp.
2196
2203
.10.1557/JMR.1999.0295
14.
Tsui
,
T. Y.
,
Ross
,
C. A.
, and
Pharr
,
G. M.
,
2003
, “
A Method for Making Substrate-Independent Hardness Measurements of Soft Metallic Films on Hard Substrates by Nanoindentation
,”
J. Mater. Res.
,
18
(
6
), pp.
1383
1391
.10.1557/JMR.2003.0190
15.
Friedrich
,
K.
,
Flöck
,
J.
,
Váradi
,
K.
, and
Néder
,
Z.
,
2001
, “
Experimental and Numerical Evaluation of the Mechanical Properties of Compacted Wear Debris Layers Formed Between Composite and Steel Surfaces in Sliding Contact
,”
Wear
,
251
, pp.
1202
1212
.10.1016/S0043-1648(01)00725-6
16.
Chang
,
L.
,
Zhang
,
Z.
,
Breidt
,
C.
, and
Friedrich
,
K.
,
2005
, “
Tribological Properties of Epoxy Nanocomposites: I. Enhancement of the Wear Resistance by Nano-TiO2 Particles
,”
Wear
,
258
, pp.
141
148
.10.1016/j.wear.2004.09.005
17.
Cho
,
M. H.
, and
Bahadur
,
S.
,
2005
, “
Study of the Tribological Synergistic Effects in CuO-Filled and Fiber-Reinforced Polyphenylene Sulfide Composites
,”
Wear
,
258
, pp.
835
845
.10.1016/j.wear.2004.09.055
18.
Chang
,
L.
, and
Zhang
,
Z.
,
2006
, “
Tribological Properties of Epoxy Nanocomposites: II. A Combinative Effect of Short Carbon Fiber and Nano-TiO2
,”
Wear
,
260
, pp.
869
878
.10.1016/j.wear.2005.04.002
19.
Guo
,
Q.
,
Rong
,
M. Z.
,
Jia
,
G. L.
,
Lau
,
K. T.
, and
Zhang
,
M. Q.
,
2009
, “
Sliding Wear Performance of Nano-SiO2/Short Carbon Fiber/Epoxy Hybrid Composites
,”
Wear
,
266
, pp.
658
665
.10.1016/j.wear.2008.08.005
20.
Saha
,
R.
, and
Nix
,
W. D.
,
2002
, “
Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation
,”
Acta Mater.
,
50
, pp.
23
38
.10.1016/S1359-6454(01)00328-7
21.
Czichos
,
H.
,
2001
, “
Tribology and its Many Facets: From Macroscopic to Microscopic to Nano-Scale Phenomena
,”
Meccanica
,
36
, pp.
605
615
.10.1023/A:1016388517893
22.
Pudjoprawoto
,
R.
,
Dougherty
,
P.
, and
Higgs
,
F. C.
,
2013
, “
A Volumetric Fractional Coverage Model to Predict Frictional Behavior for in Situ Transfer Film Lubrication
,”
Wear
,
304
, pp.
173
182
.10.1016/j.wear.2013.04.029
23.
Wornyoh
,
E. Y. A.
, and
Higgs
,
C. F.
,
2011
, “
An Asperity-Based Fractional Coverage Model for Transfer Films on a Tribological Surface
,”
Wear
,
270
, pp.
127
139
.10.1016/j.wear.2010.06.002
24.
Tewari
,
U. S.
, and
Bijwe
,
J.
,
1993
, “
Recent Development in Tribology of Fibre Reinforced Composites With Thermoplastic and Thermosetting Matrices
,”
Advances in Composites Tribology
,
K.
Friedrich
, ed.,
Elsevier
,
New York
, pp.
159
207
.
25.
Friedrich
,
K.
,
1986
, “
Wear of Reinforced Polymers by Different Abrasive Counterparts
,”
Friction and Wear of Polymer Composites
,
K.
Friedrich
, ed.,
Elsevier
,
New York
, pp.
233
287
.
26.
Chang
,
L.
, and
Friedrich
,
K.
,
2010
, “
Enhancement Effect of Nanoparticles on the Sliding Wear of Short Fiber-Reinforced Polymer Composites: A Critical Discussion of Wear Mechanisms
,”
Tribol. Int.
,
43
, pp.
2355
2364
.10.1016/j.triboint.2010.08.011
27.
Kalin
,
M.
, and
Vizintin
,
J.
,
2001
, “
Comparison of Different Theoretical Models for Flash Temperature Calculation Under Fretting Conditions
,”
Tribol. Int.
,
34
, pp.
831
839
.10.1016/S0301-679X(01)00083-4
28.
Kohan.
M. I.
,
1995
,
Nylon Plastic Handbook
,
Hanser/Gardner Publications, Inc.
,
Cincinnati, OH
, p.
344
.
You do not currently have access to this content.