An integrated model is proposed for involute gear pair combining the mixed elastodhydrodynamic lubrication (EHL) theory for finite line contact with surface temperature rise equations considering tribo-dynamic loading behaviors. The film stiffness and viscous damping as well as the friction force are taken into account. The surface topography of tooth flank measured by 3D surface profiler is also included to solve the local temperature and pressure distribution in the contact area. The results show that the temperature distributions in different meshing positions along the line of action exhibit dissimilar characteristics due to the varying of dynamic load and the changing slip-to-roll ratio, which denotes the relationship between sliding velocity and rolling velocity on the tooth flank. Besides, the maximum of temperature is likely to appear at different sides of the gear tooth width as the gear pair meshes along the line of action. Moreover, with the increasing surface roughness, the ratio of asperity contacts becomes larger, so more heat generates from the contact area and leads to higher temperature rise.

References

References
1.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lub. Tech.
,
100
(
1
), pp.
12
17
.10.1115/1.3453103
2.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lub. Tech.
,
101
(
4
), pp.
220
229
.10.1115/1.3453329
3.
Zhu
,
D.
, and
Cheng
,
H. S.
,
1988
, “
Effect of Surface Roughness on the Point Contact EHL
,”
ASME J. Tribol.
,
110
(
1
), pp.
32
37
.10.1115/1.3261571
4.
Goglia
,
P. R.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1984
, “
The Effects of Surface Irregularities on the Elastohydrodynamic Lubrication of Sliding Line Contacts, Part I-Single Irregularities, Part II—Wavy Surfaces
,”
ASME J. Tribol.
,
106
(
1
), pp.
104
119
.10.1115/1.3260845
5.
Lubrecht
,
A. A.
,
ten Napel
,
W. E.
, and
Bosma
,
R.
,
1988
, “
The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
,
110
(
3
), pp.
421
426
.10.1115/1.3261645
6.
Chang
,
L.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1989
, “
Effects of Lubricant Rheology and Kinematic Condition on Micro-Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
111
(
1
), pp.
344
351
.10.1115/1.3261920
7.
Ai
,
X.
, and
Zhen
,
L.
,
1989
, “
A General Model for Micro-Elastohydrodynamic Lubrication and Its Full Numerical Solution
,”
ASME J. Tribol.
,
111
(
4
), pp.
569
579
.10.1115/1.3261979
8.
Venner
,
C. H.
, and
ten Napel
,
W. E.
,
1992
, “
Surface Roughness Effects in an EHL Line Contact
,”
ASME J. Tribol.
,
114
(
3
), pp.
616
622
.10.1115/1.2920926
9.
Ai
,
X.
,
Cheng
,
H. S.
, and
Zheng
,
L.
,
1993
, “
A Transient Model for Micro-Elastohydrodynamic Lubrication With Three Dimensional Irregularities
,”
ASME J. Tribol.
,
115
(
1
), pp.
102
110
.10.1115/1.2920961
10.
Chang
,
L.
,
Webster
,
M. N.
, and
Jackson
,
A.
,
1994
, “
A Line Contact Micro-EHL Model With Three-Dimensional Surface Topography
,”
ASME J. Tribol.
,
116
(
1
), pp.
21
28
.10.1115/1.2927040
11.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
Transient EHL Analysis for Line Contacts With Measured Surface Roughness Using Multigrid Technique
,”
ASME J. Tribol.
,
116
(
3
), pp.
549
558
.10.1115/1.2928879
12.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1996
, “
Numerical Analysis of the Influence of Waviness on the Film Thickness of a Circular EHL Contact
,”
ASME J. Tribol.
,
118
(
1
), pp.
153
161
.10.1115/1.2837071
13.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
482
.10.1115/1.2831560
14.
Zhu
,
D.
, and
Ai
,
X.
,
1997
, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,”
ASME J. Tribol.
,
119
(
3
), pp.
375
384
.10.1115/1.2833498
15.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.10.1115/1.555322
16.
Zhu
,
D.
,
Wang
,
J. X.
,
Ren
,
N.
, and
Wang
,
Q.
,
2012
, “
Mixed Elastohydrodynamic Lubrication in Finite Roller Contacts Involving Realistic Geometry and Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011501
.10.1115/1.4005952
17.
Holmes
,
M. J. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2005
, “
Analysis of Mixed Lubrication Effects in Simulated Gear Tooth Contacts
,”
ASME J. Tribol.
,
127
(
1
), pp.
61
69
.10.1115/1.1828452
18.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
(
1
),
p. 011501
.10.1115/1.4000270
19.
Evans
,
H. P.
,
Snidle
,
R. W.
, and
Sharif
,
K. J.
,
2013
, “
Analysis of Micro-Elastohydrodynamic lubrication and Prediction of Surface Fatigue Damage in Micropitting Tests on Helical Gears
,”
ASME J. Tribol.
,
135
(
1
), p.
011501
.10.1115/1.4007693
20.
Wang
,
K. L.
, and
Cheng
,
H. S.
,
1981
, “
A Numerical Solution to the Dynamic Load, Film Thickness and Surface Temperatures in Spur Gears, Part I: Analysis
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
177
187
.10.1115/1.3254859
21.
Wang
,
K. L.
, and
Cheng
,
H. S.
,
1981
, “
A Numerical Solution to the Dynamic Load, Film Thickness and Surface Temperatures in Spur Gears, Part II: Results
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
188
194
.10.1115/1.3254860
22.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2007
, “
An Analysis of the Automotive Driveline Dynamic Behavior Focusing on the Influence of the Oil Squeeze Effect on the Idle Rattle Phenomenon
,”
J. Sound Vib.
,
303
, pp.
858
872
.10.1016/j.jsv.2007.02.008
23.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
Influence of Dynamic Behavior on Elastohydrodynamic Lubrication of Spur Gear
,”
J. Eng. Trib.
,
225
, pp.
740
753
.10.1177/1350650111409517
24.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Spur Gear Mesh Interface Damping Model Based on Elastohydrodynamic Contact Behavior
,”
Int. J. Powertrains
,
1
, pp.
4
21
.10.1504/IJPT.2011.041907
25.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
, pp.
4963
4978
.10.1016/j.jsv.2013.04.022
26.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1992
, “
Three-Dimensional Temperature Distribution in EHD Lubrication, Part I: Circular Contact
,”
ASME J. Tribol.
,
114
(
1
), pp.
32
41
.10.1115/1.2920864
27.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1993
, “
Three-Dimensional Temperature Distribution in EHD Lubrication, Part II: Point Contact and Numerical Formulation
,”
ASME J. Tribol.
,
115
(
1
), pp.
36
45
.10.1115/1.2920984
28.
Lee
,
R. T.
, and
Hsu
,
C. H.
,
1993
, “
A Fast Method for the Analysis of Thermal-Elastohydrodynamic Lubrication of Rolling/Sliding Line Contacts
,”
Wear
,
166
, pp.
107
177
.10.1016/0043-1648(93)90285-T
29.
Lee
,
R. T.
, and
Hsu
,
C. H.
,
1995
, “
Multilevel Solution for Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Circular Contacts
,”
Tribol. Int.
,
28
(
8
), pp.
541
552
.10.1016/0301-679X(96)85542-3
30.
Hsu
,
R. T.
, and
Hsu
,
C. H.
,
1994
, “
Advanced Multilevel Solution for Thermal Elastohydrodynamic Lubrication of Simple Sliding Line Contacts
,”
Wear
,
171
, pp.
227
237
.10.1016/0043-1648(94)90366-2
31.
Hsu
,
C. H.
, and
Lee
,
R. T.
,
1994
, “
An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line Contacts
,”
ASME J. Tribol.
,
116
(
4
), pp.
762
769
.10.1115/1.2927330
32.
Gao
,
J.
,
Lee
,
S. C.
,
Ai
,
X.
, and
Nixon
,
H.
,
2000
, “
An FFT-Based Transient Flash Temperature Model of General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
,
122
(
3
), pp.
519
523
.10.1115/1.555395
33.
Liu
,
S. B.
, and
Wang
,
Q.
,
2001
, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
,
123
(
1
), pp.
17
26
.10.1115/1.1327585
34.
Wang
,
W. Z.
,
Wang
,
H.
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2003
, “
A Comparative Study of the Methods for Calculation of Surface Elastic Deformation
,”
J. Eng. Tribol.
,
217
(
2
), pp.
145
153
.10.1243/13506500360603570
35.
Wang
,
W. Z.
,
Liu
,
Y. C.
,
Wang
,
H.
, and
Hu
,
Y. Z.
,
2004
, “
A Computer Thermal Model of Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
162
170
.10.1115/1.1631012
36.
Yuan.
S. H.
,
Dong
,
H. L.
, and
Li
,
X. Y.
,
2012
, “
Analysis of Lubricating Performance for Involute Gear Based on Dynamic Loading Theory
,”
ASME, J. Mech. Des.
,
134
(
12
),
p. 124004
.10.1115/1.4007842
37.
Yang
,
P.
, and
Yang
,
P. R.
,
2006
, “
Theory of Thermal Elastohydrodynamic Lubrication for Helical Gears
,”
J. Mech. Eng.
,
42
(
10
), pp.
43
48
(in Chinese)10.3901/JME.2006.10.043
38.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Second ed.
,
Oxford Press
, New York.
39.
Liou
,
J. J.
,
2010
, “
A Theoretical Experimental Investigation of Roller and Gear Scuffing
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
40.
Umezawa
,
K.
,
Suzuki
,
T.
, and
Sato
,
T.
,
1986
, “
Vibration of Power Transmission Helical Gears (Approximate Equation of Tooth Stiffness)
,”
Bull. JSME
,
29
(
251
), pp.
1605
1611
.10.1299/jsme1958.29.1605
41.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication
,”
Wear
,
19
, pp.
91
108
.10.1016/0043-1648(72)90445-0
42.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2008
, “
Thermoelastohydrodynamic Analysis of Spur Gears With Consideration of Surface Roughness
,”
Tribol. Lett.
,
32
, pp.
129
141
.10.1007/s11249-008-9370-x
43.
Fatih
,
K.
,
Stephen
,
E. O.
, and
Kadir
,
C.
,
2008
, “
Dynamic Analysis of Involute Spur Gears With Asymmetric Teeth
,”
Int. J. Mech. Sci.
,
50
, pp.
1598
1610
.10.1016/j.ijmecsci.2008.10.004
44.
Pedrero
,
J. I.
,
Pleguezuelos
,
M.
, and
Artoes
,
M.
,
2010
, “
Load Distribution Model Along the Line of Contact for Involute External Gears
,”
Mech. Mach. Theory
,
45
, pp.
780
794
.10.1016/j.mechmachtheory.2009.12.009
You do not currently have access to this content.