This paper addresses a largely ignored aspect pertaining to the elastohydrodynamic lubrication (EHL) traction behavior of fragile lubricants which undergo transition to glassy state at typical EHL contact zone pressures. For such lubricants, a conventional EHL model predicts extremely high and unrealistic values of traction coefficient, especially under near pure rolling conditions where thermal effect is negligible. Therefore, an EHL model incorporating the effect of limiting shear stress and the associated wall slip phenomenon is presented herein. Unlike the other such investigations involving limiting shear stress behavior, the present model employs Carreau-type power-law based models to describe the rheology of lubricants below the limiting shear stress along with realistic pressure-viscosity relationships (WLF and Doolittle-Tait). The use of Carreau-type shear-thinning model in this analysis allows the simultaneous prediction of minimum film thickness and traction coefficient for lubricants which shear-thin in the inlet zone and exhibit limiting shear stress behavior in the contact zone, a feature absent in the existing EHL models utilizing ideal visco-plastic or some other unrealistic rheological model. Using published experimental data pertaining to the shear-thinning and pressure-viscosity response of two fragile lubricants (L100 and LVI260), it has been demonstrated that the present model can explain the appearance of plateau in the experimental traction curve. Also, the influence of shear-thinning parameters and the pressure-viscosity coefficient on the predicted limiting shear stress zone has been studied.

References

References
1.
Crook
,
A. W.
,
1963
, “
The Lubrication of Rollers IV, Measurements of Friction and Effective Viscosity
,”
Philos. Trans. R. Soc.
,
A255
, pp.
281
312
.
2.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behaviour of EHD Oil Films
,”
Proc. R. Soc. London, Ser. A
,
356
, pp.
215
236
.10.1098/rspa.1977.0129
3.
Conry
,
T. F.
,
Johnson
,
K. L.
, and
Owen
,
S.
,
1979
, “
Viscosity in Thermal Regime of EHD Traction
,”
Thermal Effects in Tribology, Proceedings of the 6th Leeds-Lyon Symposium on Tribology
, Lyon, France, 1979,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
and
D.
Berthe
, eds.,
Mechanical Engineering Publication Ltd.
,
London
, pp.
219
227
.
4.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
,
1980
, “
Thermal Analysis of an Eyring Fluid in EHD Traction
,”
Wear
,
61
, p.
353
.10.1016/0043-1648(80)90298-7
5.
Sadeghi
,
F.
,
Dow
,
T. A.
, and
Johnson
,
R. R.
,
1987
, “
Thermal Effects in Rolling/Sliding Contacts, Part 3: Approximate Method for Prediction of Mid-Film Temperature and Sliding Traction
,”
ASME J. Tribol.
,
109
(
3
), pp.
519
524
.10.1115/1.3261492
6.
Lee
,
R. T.
, and.
Hsu
,
C. H.
,
1993
, “
A Fast Method for the Analysis of Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Line Contacts
,”
Wear
,
106
, pp.
107
117
.
7.
Hsu
,
C. H.
, and
Lee
,
R. T.
,
1994
, “
An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line Contacts
,”
ASME J. Tribol.
,
116
(
4
), pp.
762
769
.10.1115/1.2927330
8.
Rajiv Dama
, and
Chang
,
L.
,
1997
, “
An Efficient and Accurate Calculation of Traction in Elastohydrodynamic Contacts
,”
Wear
,
206
, pp.
113
121
.10.1016/S0043-1648(96)07309-7
9.
Liu
,
Y.
,
Wang
,
Q. J.
,
Bair
,
S.
, and
Vergne
,
P.
,
2007
, “
A Quantitative Solution for the Full Shear-Thinning EHL Point Contact Problem Including Traction
,”
Tribol. Lett.
,
28
(
2
), pp.
171
181
.10.1007/s11249-007-9262-5
10.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2009
, “
Traction in EHL Line Contacts Using Free Volume Pressure-Viscosity Relationship With Thermal and Shear-Thinning Effects
,”
ASME J. Tribol.
,
131
(
1
), p.
011503
.10.1115/1.3002331
11.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2008
, “
Effect of Starvation on Traction and Film thickness in Thermo-EHL Line Contacts With Shear-Thinning Lubricants
,”
Tribol. Lett.
,
32
, pp.
171
177
.10.1007/s11249-008-9375-5
12.
Fu
,
Z.
,
Guo
,
F.
, and
Wong
,
P. L.
,
2012
, “
Friction-Speed Characteristics of Elastohydrodynamically Lubricated Contacts With Anomalous Film Shapes
,”
Proc. IMechE, Part J: J. of Engineering Tribology
,
226
(
2
), pp.
81
86
.
13.
Bair
,
S.
,
2004
, “
Actual Eyring Models for Thixotropy and Shear-Thinning: Experimental Validation and Application to EHD
,”
ASME J. Tribol.
,
126
, pp.
728
732
.10.1115/1.1792693
14.
Kumar
,
P.
,
Khonsari
,
M. M.
, and
Bair
,
S.
,
2009
, “
Full EHL Simulations Using the Actual Ree-Eyring Model for Shear Thinning Lubricants
,”
ASME J. Tribol.
,
131
(
1
), p.
011802
.10.1115/1.3002328
15.
Smith
,
F. W.
,
1958
, “
Lubricant Behavior in Concentrated Contact Systems— The Castor-Oil Steel System
,”
Wear
,
2
, pp.
250
263
.10.1016/0043-1648(59)90264-9
16.
Smith
,
F. W.
,
1960
, “
Lubricant Behavior in Concentrated Contact Systems— Some Rheological Problems
,”
ASLE Trans.
,
3
, pp.
18
25
.10.1080/05698196008972381
17.
Smith
,
F. W.
,
1962
, “
The Effect of Temperature in Concentrated Contact Lubrication”
,
ASLE Trans.
,
5
, pp.
142
148
.10.1080/05698196208972461
18.
Jacobson
,
B. O.
,
1970
,
On the Lubrication of Heavily Loaded Spherical Surfaces Considering Surface Deformations and Solidification of the Lubricant, Acta Polytech. Scand., Mech. Eng. Ser.
, Vol.
54
,
Stockholm, Sweden
.
19.
Bair
,
S.
,
Qureshi
,
F.
, and
Winer
,
W. O.
,
1993
, “
Observations of Shear Localization in Liquid Lubricants Under Pressure
,”
ASME J. Tribol.
,
115
(
3
), pp.
507
514
.10.1115/1.2921667
20.
Ohno
,
N.
,
Shiyatake
,
A.
,
Kumamoto
,
T.
,
Nishina
,
S.
,
Kuwano
,
N.
, and
Hirano
,
F.
,
1996
, “
Occurrence of Shear Bands at High Pressure (in Japanese)
,”
Proceedings of JAST Tribology Conference
, The Japanese Society of Tribology, Tokyo, pp.
515
517
.
21.
Bair
,
S.
, and
Winer
,
W. O.
,
1979
, “
A Rheological Model for Elastohydrodynamic Contacts Based in Primary Laboratory Data
,”
ASME J. Lub. Technol.
,
101
(
3
), pp.
258
265
.10.1115/1.3453342
22.
Gecim
,
B.
, and
Winer
,
W. O.
,
1980
, “
Lubricant Limiting Shear Stress Effect on EHD Film Thickness
,”
ASME J. Lub. Technol.
,
102
(
2
), p.
213
.10.1115/1.3251474
23.
Jacobson
,
B. O.
, and
Hanrock
,
B. J.
,
1984
, “
Non-Newtonian Fluid Model Incorporated into Elastohydrodynamic Lubrication of Rectangular Contacts
,”
ASME J. Tribol.
,
106
(
2
), pp.
275
284
.10.1115/1.3260901
24.
Lee
,
R. T.
, and
Hanrock
,
B. J.
,
1990
, “
A Circular Non-Newtonian Fluid Model: Part I-Used in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
2
), pp.
486
496
.10.1115/1.2920285
25.
Shieh
,
J.
, and
Hamrock
,
B. J.
,
1991
, “
Film Collapse in EHL and Micro-EHL
,”
ASME J. Tribol.
,
113
(
2
), pp.
372
377
.10.1115/1.2920631
26.
Hsiao
,
H. S.
, and
Hamrock
,
B. J.
,
1992
, “
A Complete Solution for Thermal Elastohydrodynamic Lubrication of Line Contacts Using Circular Non-Newtonian Fluid Model
,”
ASME J. Tribol.
,
114
(
3
), pp.
540
552
.10.1115/1.2920916
27.
Wen
,
S. Z.
, and
Zhang
,
Y. B.
,
2000
, “
EHL Performance of the Lubricant with Shear Strength: Part-I—Boundary Slippage and Film Failure
,”
Tribol. Trans.
,
43
, pp.
700
710
.10.1080/10402000008982399
28.
Zhang
,
Y. B.
, and
Wen
,
S.
,
2002
, “
An Analysis of Elastohydrodynamic Lubrication With Limiting Shear Stress: Part I—Theory and Solutions
,”
Tribol. Trans.
,
45
, pp.
135
144
.10.1080/10402000208982532
29.
Stahl
,
J.
, and
Jacobson
,
B. O.
,
2003
, “
A Lubricant Model Considering Wall-Slip in EHL Line Contacts
,”
J. Tribol.
,
125
, pp.
523
532
.10.1115/1.1537750
30.
Habchi
,
W.
,
Bair
,
S.
, and
Vergne
,
P.
,
2013
, “
On Friction Regimes in Quantitative Elastohydrodynamics
,”
Tribol. Int.
,
58
, pp.
107
117
.10.1016/j.triboint.2012.10.005
31.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2013
, “
Towards the True Prediction of EHL Friction
,”
Tribol. Int.
,
66
, pp.
19
26
.10.1016/j.triboint.2013.04.008
32.
Bair
,
S.
,
2007
,
High Pressure Rheology for Quantitative Elastohydrodynamics, Tribology and Interface Engineering Series
, Vol.
54
,
Elsevier Press
,
Amsterdam, Netherlands
.
33.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2008
, “
Combined Effects of Shear Thinning and Viscous Heating on EHL Characteristics of Rolling/Sliding Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041505
.10.1115/1.2959111
34.
Bair
,
S.
,
2001
, “
The High-Pressure, High-Shear Stress Rheology of a Polybutene
,”
J. Non-Newtonian Fluid Mech.
,
97
, pp.
53
65
.10.1016/S0377-0257(00)00197-X
35.
Bair
,
S.
, and
Kotzalas
,
M.
,
2006
, “
The Contribution of Roller Compliance to Elastohydrodynamic Traction
,”
Tribol. Trans.
,
49
, pp.
218
224
.10.1080/05698190600614817
You do not currently have access to this content.