The present paper proposes to analyze relations between the behavior of two bodies in contact (local stress and vibration modes) and the rheology of third-body particles. Experiments are performed on a system composed of a polycarbonate disk in contact with a steel cylinder, where birefringent property of polycarbonate allows us to observe shear-stress isovalues. Multiscale numerical simulations involve the coupling between finite elements and discrete elements to model simultaneously nonhomogeneous third-body flows within a confined contact and dynamical behavior of the bodies in contact. Comparisons between experiments and simulations are performed on the dynamic response of the system, the stress distribution, as well as the evolution of third-body particles within the contact. Such comparisons exhibit not only qualitative results but also quantitative ones and suggest a new approach to study in deeper third-body rheology.

References

References
1.
Berthier
,
Y.
,
1990
, “
Experimental Evidence for Friction and Wear Modelling
,”
Wear
,
139
, pp.
77
92
.10.1016/0043-1648(90)90210-2
2.
Saulot
,
A.
,
Descartes
,
S.
,
Desmyter
,
D.
,
Levy
,
D.
, and
Berthier
,
Y.
,
2006
, “
A Tribological Characterization of the Damage Mechanism of Low Rail Corrugation on Sharp Curved Track
,”
Wear
,
260
(
9–10
), pp.
984
995
.10.1016/j.wear.2005.06.004
3.
Richard
,
D.
,
Iordanoff
,
I.
,
Renouf
,
M.
, and
Berthier
,
Y.
,
2008
, “
Thermal Study of the Dry Sliding Contact With Third Body Presence
,”
ASME J. Tribol.
,
130
(
3
), p.
031404
.10.1115/1.2913540
4.
Raje
,
N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Hoeprich
,
M. R.
,
2007
, “
Evaluation of Stresses Around Inclusions in Hertzian Contacts Using the Discrete Element Method
,”
ASME J. Tribol.
,
129
(
2
), pp.
283
291
.10.1115/1.2464132
5.
Godet
,
M.
,
1990
, “
Third-Bodies in Tribology
,”
Wear
,
136
(
1
), pp.
29
54
.10.1016/0043-1648(90)90070-Q
6.
Adams
,
G. G.
,
1995
, “
Self-Excited Oscillations of Two Elastic Half-Spaces Sliding With a Constant Coefficient of Friction
,”
ASME J. Appl. Mech.
,
62
(4), pp. 867–872.10.1115/1.2896013
7.
Ranjith
,
K.
, and
Rice
,
J. R.
,
2001
, “
Slip Dynamics at an Interface Between Dissimilar Materials
,”
J. Mech. Phys. Solids
,
49
, pp.
341
361
.10.1016/S0022-5096(00)00029-6
8.
Di Bartolomeo
,
M.
,
Massi
,
F.
,
Baillet
,
L.
,
Culla
,
A.
,
Fregolent
,
A.
, and
Berthier
,
Y.
,
2012
, “
Wave and Rupture Propagation at Frictional Bimaterial Sliding Interfaces: From Local to Global Dynamics, From Stick-Slip to Continuous Sliding
,”
Tribol. Int.
,
52
, pp.
117
131
.10.1016/j.triboint.2012.03.008
9.
Peillex
,
G.
,
Baillet
,
L.
, and
Berthier
,
Y.
,
2008
, “
Homogenization in Non-linear Dynamics Due to Frictional Contact
,”
Int. J. Solid Struct.
,
45
(
9
), pp.
2451
2469
.10.1016/j.ijsolstr.2007.12.005
10.
Elrod
,
H.
, and
Brewe
,
D.
,
1991
, “
Numerical Experiments With Flows of Elongated Granules
,”
Tribol. Ser.
,
21
, pp.
219
226
.10.1016/S0167-8922(08)70527-3
11.
Iordanoff
,
I.
,
Seve
,
B.
, and
Berthier
,
Y.
,
2002
, “
Solid Third Body Analysis Using a Discrete Approach: Influence of Adhesion and Particle Size on Macroscopic Properties
,”
ASME J. Tribol.
,
124
(
3
), pp.
530
538
.10.1115/1.1456089
12.
Temizer
,
I.
, and
Wriggers
,
P.
,
2008
, “
A Multiscale Contact Homogenization Technique for the Modeling of Third Bodies in the Contact Interface
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
3–4
), pp.
377
396
.10.1016/j.cma.2008.08.008
13.
Cao
,
H.-P.
,
Renouf
,
M.
,
Dubois
,
F.
, and
Berthier
,
Y.
,
2011
, “
Coupling Continuous and Discontinuous Descriptions to Model First Body Deformation in Third Body Flows
,”
ASME J. Tribol.
,
133
(
4
), p.
041601
.10.1115/1.4004881
14.
Leonard
,
B. D.
,
Patil
,
P.
,
Slack
,
T. S.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2011
, “
Fretting Wear Modeling of Coated and Uncoated Surfaces Using the Combined Finite-Discrete Element Method
,”
ASME J. Tribol.
,
133
(
2
), p.
021601
.10.1115/1.4003482
15.
Tonazzi
,
D.
,
Massi
,
F.
,
Culla
,
A.
,
Baillet
,
L.
,
Fregolent
,
A.
, and
Berthier
,
Y.
, “
Instability Scenarios Between Elastic Media Under Frictional Contact
,”
Mech. Syst. Signal Process
. (in press).
16.
Renouf
,
M.
,
Massi
,
F.
,
Fillot
,
N.
, and
Saulot
,
A.
,
2011
, “
Numerical Tribology of a Dry Contact
,”
Tribol. Int.
,
44
(
7–8
), pp.
834
844
.10.1016/j.triboint.2011.02.008
17.
Renouf
,
M.
,
Massi
,
F.
,
Saulot
,
A.
, and
Fillot
,
N.
,
2012
, “
Dialogue Numérique Entre Echelles Tribologiques
,” ANR JC Tech. Rep.
18.
Moreau
,
J. J.
,
1994
, “
Some Numerical Methods in Multibody Dynamics: Application to Granular Materials
,”
Eur. J. Mech. A Solids
,
13
(
4-suppl.
), pp.
93
114
.
19.
Jean
,
M.
,
1999
, “
The Non-smooth Contact Dynamics Method
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3–4
), pp.
235
257
.10.1016/S0045-7825(98)00383-1
20.
Renouf
,
M.
,
Dubois
,
F.
, and
Alart
,
P.
,
2004
, “
A Parallel Version of the Non Smooth Contact Dynamics Algorithm Applied to the Simulation of Granular Media
,”
J. Comput. Appl. Math.
,
168
(
1–2
), pp.
375
382
.10.1016/j.cam.2003.05.019
21.
Mohammad
,
D.
, and
Khan
,
N.
,
1995
, “
On the Role of Rayleigh Damping
,”
J. Sound Vib.
,
185
(
2
), pp.
207
218
.10.1006/jsvi.1995.0376
22.
Lee
,
J.
,
Xu
,
G.
, and
Liang
,
H.
,
2001
, “
Experimental and Numerical Analysis of Friction and Wear Behavior of Polycarbonate
,”
Wear
,
251
(
1–12
), pp.
1541
1556
.10.1016/S0043-1648(01)00788-8
23.
Mergler
,
Y.
,
Kampen
,
R. V.
,
Nauta
,
W.
,
Schaake
,
R.
,
Raas
,
B.
,
Griensven
,
J. V.
, and
Meesters
,
C.
,
2005
, “
Influence of Yield Strength and Toughness on Friction and Wear of Polycarbonate
,”
Wear
,
258
(
5–6
), pp.
915
923
.10.1016/j.wear.2004.09.046
24.
Linck
,
V.
,
Baillet
,
L.
, and
Berthier
,
Y.
,
2003
, “
Modeling the Consequences of Local Kinematics of the First Body on Friction and on Third Body Sources in Wear
,”
Wear
,
255
(
1–6
), pp.
299
308
.10.1016/S0043-1648(03)00207-2
25.
Bagi
,
K.
,
1996
, “
Stress and Strain in Granular Assemblies
,”
Mech. Mater.
,
22
(
3
), pp.
165
177
.10.1016/0167-6636(95)00044-5
You do not currently have access to this content.