For a thermal flying-height control (TFC) slider, its heater is usually provided with DC voltage. However, recently, both DC and AC voltages may be supplied to the heater. Unlike supplying AC voltage to the slider and disk in the past, the AC voltage to the heater will not only produce a thermal protrusion on the slider, but also leaves a part of the AC voltage on the slider/disk interface. The voltage acts as the electrostatic force and can be used for further control of the slider, even in the drive level. Simulations show that the flying height modulation is highly related to the AC frequency. By sweeping the AC frequencies while monitoring the flying height and pitch angle modulations, the first and second pitch modes of air bearing frequencies can be experimentally obtained without slider/disk contact. The roll mode frequency is also obtainable when the skew angle is not zero. The simulation results agree well with the experimental results obtained by a laser Doppler vibrometer (LDV). Therefore, the sweeping AC frequency method provides a practical scheme to obtain the air bearing frequencies without any slider/disk contact, even in the drive level.

References

1.
Meyer
,
D. W.
,
Kupinski
,
P. E.
, and
Liu
,
J. C.
,
1999
, “
Slider With Temperature Responsive Transducer Positioning
,” U.S. Patent No. 5,991,113.
2.
Li
,
H.
,
Zheng
,
H.
,
Fritzsche
,
J.
,
Amemiya
,
K.
, and
Talke
,
F. E.
,
2010
, “
Simulation of Flying Height and Response Time of Thermal Flying Height Control Sliders With Thermal Insulators
,”
IEEE Trans. Magn.
,
46
(
6
), pp.
1292
1294
.10.1109/TMAG.2010.2040025
3.
Kurita
,
M.
,
Xu
,
J.
,
Tokuyama
,
M.
,
Nakamoto
,
K.
,
Saegusa
,
S.
, and
Maruyama
,
Y.
,
2005
, “
Flying-Height Reduction of Magnetic-Head Slider Due to Thermal Protrusion
,”
IEEE Trans. Magn.
,
41
(
10
), pp.
3007
3009
.10.1109/TMAG.2005.855240
4.
Hua
,
W.
,
Liu
,
B.
,
Yu
,
S.
,
Zhou
,
W.
,
Myo
,
K. S.
, and
Ng
,
K. K.
,
2011
, “
Thermal Protrusion Induced Air Bearing Frequency Variations
,”
Microsyst. Technol.
,
17
, pp.
891
896
.10.1007/s00542-011-1230-1
5.
Juang
J.-Y.
,
Forrest
,
J.
, and
Huang
,
F.-Y.
,
2011
, “
Magnetic Head Protrusion Profiles and Wear Pattern of Thermal Flying-Height Control Sliders With Different Heater Designs
,”
IEEE Trans. Magn.
,
47
(
10
), pp.
3437
3430
.10.1109/TMAG.2011.2147773
6.
Sheng
,
G.
and
Xu
,
J.
,
2011
, “
A Parameter Identification Method for Thermal Flying-Height Control Sliders
,”
Microsyst. Technol.
,
17
, pp.
1409
1415
.10.1007/s00542-011-1335-6
7.
Zheng
,
H.
,
Li
,
H.
, and
Talke
,
F. E.
,
2012
, “
Numerical Simulation of Thermal Flying Height Control Sliders in Heat-Assisted Magnetic Recording
,”
Microsyst. Technol.
,
18
, pp.
1731
1739
.10.1007/s00542-012-1618-6
8.
Marchon
,
B.
and
Olson
,
T.
,
2009
, “
Magnetic Spacing Trends: From LMR to PMR and Beyond
,”
IEEE Trans. Magn.
,
45
(
10
), pp.
3608
3611
.10.1109/TMAG.2009.2023624
9.
Baumgart
,
P. M.
,
Contreras
,
J. T.
,
Franca-Neto
,
L.
,
Knigge
,
B. E.
,
Kroeker
,
R.
, and
Singh
,
G. P.
,
2010
, “
Method and System for Pre-Contact Detection and Active Damping of Air Bearing Vibrations in a Hard Disk Drive
,” U.S. Patent No. 7,660,068.
10.
Wasem
,
J. V.
,
LaMarche
,
B. L.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
,
2003
, “
Triboelectric Charging of a Perfluoropolyether Lubricant
,”
J. Appl. Phys.
,
93
(
4
), pp.
2202
2207
.10.1063/1.1536011
11.
Feng
,
Z.
,
Cha
,
E.
, and
Zhang
,
X.
,
2005
, “
A Study of Electrical Charge at Head-Disk Interface
,”
Tribol. Lett.
,
18
(
1
), pp.
53
57
.10.1007/s11249-004-1784-5
12.
Lee
,
D. Y.
,
Lee
,
J.
,
Hwanga
,
J.
, and
Choa
,
S. H.
,
2007
, “
Effect of Relative Humidity and Disk Acceleration on Tribocharge Build-Up at a Slider–Disk Interface
,”
Tribol. Int.
,
40
, pp.
1253
1257
.10.1016/j.triboint.2006.11.006
13.
Song
,
D.
,
Schnur
,
D.
, and
Boutaghou
,
Z.-E.
,
2004
, “
Discharge Mechanism for Electrostatic Fly Control
,”
IEEE Trans. Magn.
,
40
(
4
), pp.
3162
3164
.10.1109/TMAG.2004.828981
14.
Knigge
,
B. E.
,
Mate
,
C. M.
,
Ruiz
,
O.
, and
Baumgart
,
P. M.
,
2004
, “
Influence of Contact Potential on Slider-Disk Spacing: Simulation and Experiment
,”
IEEE Trans. Magn.
,
40
(
4
), pp.
3165
3167
.10.1109/TMAG.2004.828955
15.
Tan
,
B. K.
,
Liu
,
B.
,
Ma
,
Y. S.
,
Zhang
,
M. S.
, and
Ling
,
S. F.
,
2007
Effect of Electrostatic Force on Slider-Lubricant Interaction
,”
IEEE Trans. Magn.
,
43
(
6
), pp.
2241
2243
.10.1109/TMAG.2007.893642
16.
Hua
,
W.
,
Liu
,
B.
,
Yu
,
S.
, and
Zhou
,
W.
,
2007
, “
Probability Model for the Intermolecular Force With Surface Roughness Considered
,”
Tribol. Int.
,
40
, pp.
1047
1055
.10.1016/j.triboint.2006.10.002
17.
Hua
,
W.
,
Liu
,
B.
, and
Sheng
,
G.
,
1999
, “
Probability Model and Its Application on the Interaction of Nano-Spaced Slider/Disk Interface
,”
IEICE Trans. Electron.
,
E82-C
(
12
), pp.
2139
2147
.
18.
Hua
,
W.
,
Yu
,
S.
,
Zhou
,
W.
, and
Myo
,
K. S.
,
2012
, “
A Fast Implicit Algorithm for Time-Dependent Dynamic Simulations of Air Bearing Sliders
,”
ASME J. Tribol.
,
134
(3), p.
031901
.10.1115/1.4006134
19.
Li
,
J.
,
Xu
,
J.
, and
Shimizu
,
Y.
,
2010
, “
Design and Evaluation of Damped Air Bearings at Head-Disk Interface
,”
ASME J. Tribol.
,
132
, p.
031702
.10.1115/1.4001812
20.
Zeng
,
Q. H.
,
Chen
,
L. S.
, and
Bogy
,
D. B.
,
1997
, “
A Modal Analysis Method for Slider Air Bearing in Hard Disk Drives
,”
IEEE Trans. Magn.
,
33
, pp.
3124
3126
.10.1109/20.617865
21.
Sheng
,
G.
,
He
,
J.
, and
Duan
,
S.
,
2011
, “
Analysis of Transient Contact Response of a Sub-10 Nanometer Air-Bearing Slider (Pico Glide Head) Using Empirical Mode Decomposition
,”
ASME J. Tribol.
,
133
, p.
031901
.10.1115/1.4004098
22.
Sheng
,
G.
,
He
,
J.
, and
Duan
,
S.
,
2011
, “
Identification of the Spectrum Signature of Air-Bearing Slider Dynamics
,”
Tribol. Lett.
,
41
, pp.
395
408
.10.1007/s11249-010-9722-1
You do not currently have access to this content.