The underlying theory, in this paper, is based on clear physical arguments related to conservation of mass flow and considers both incompressible and compressible fluids. The result of the mathematical modeling is a system of equations with two unknowns, which are related to the hydrodynamic pressure and the degree of saturation of the fluid. Discretization of the system leads to a linear complementarity problem (LCP), which easily can be solved numerically with readily available standard methods and an implementation of a model problem in matlab code is made available for the reader of the paper. The model and the associated numerical solution method have significant advantages over today's most frequently used cavitation algorithms, which are based on Elrod–Adams pioneering work.

References

References
1.
Giacopini
,
M.
,
Fowell
,
M. T.
,
Dini
,
D.
, and
Strozzi
,
A.
,
2010
, “
A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation
,”
J. Tribol.
,
132
(
4
), p.
041702
.10.1115/1.4002215
2.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
,
2005
, “
Two-Scale Homogenization of a Hydrodynamic Elrod-Adams Model
,”
Asymptotic Anal.
,
44
(
1
), pp.
75
110
.
3.
Bayada
,
G.
,
Martin
,
S.
, and
Vázquez
,
C.
,
2005
, “
An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model
,”
J. Tribol.
,
127
(
4
), pp.
793
802
.10.1115/1.2005307
4.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
J. Tribol.
,
103
, pp.
350
354
.
5.
Bayada
,
G.
,
Talibi
,
M. E. A.
, and
Hadi
,
K. A.
,
2007
, “
Existence and Uniqueness for a Non-Coercive Lubrication Problem
,”
J. Math. Anal. Appl.
,
327
, pp.
585
610
.10.1016/j.jmaa.2006.04.035
6.
Cottle
,
R. W.
,
Pang
,
J. S.
, and
Stone
,
R. E.
,
2009
, “
The Linear Complementarity Problem
,”
Report No. 60, SIAM, Philadelphia, PA.
7.
Elrod
,
H. G.
, and
Adams
,
M. L.
,
1975
, “
A Computer Program for Cavitation and Starvation Problems
,”
Cavitation and Related Phenomena in Lubrication
,
D.
Dowson
,
M.
Godet
, and
C. M.
Taylor
, eds.,
Mechanical Engineering Publications, ITC
,
Sugar Grove, IL
, pp.
37
43
.
8.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, Jr.
,
1989
, “
Development and Evaluation of a Cavitation Algorithm
,”
STLE Tribol. Trans.
,
32
(
2
), pp.
225
233
.10.1080/10402008908981882
9.
Bertocchi
,
L.
,
Dini
,
D.
,
Giacopini
,
M.
,
Fowell
,
M. T.
, and
Baldini
,
A.
,
2013
, “
Fluid Film Lubrication in the Presence of Cavitation: A Mass-Conserving Two-Dimensional Formulation for Compressible, Piezoviscous and Non-Newtonian Fluids
,”
Tribol. Int.
,
67
, pp.
61
71
.10.1016/j.triboint.2013.05.018
10.
Sahlin
,
F.
,
Almqvist
,
A.
,
Larsson
,
R.
, and
Glavatskih
,
S.
,
2007
, “
A Cavitation Algorithm for Arbitrary Lubricant Compressibility
,”
Tribol. Int.
,
40
(
8
), pp.
1294
1300
.10.1016/j.triboint.2007.02.009
11.
Almqvist
,
A.
,
Spencer
,
A.
, and
Wall
,
P.
,
2013
, “
Matlab Routines Solving a Linear Complementarity Problem Appearing in Lubrication With Cavitation
,” http://www.mathworks.com/matlabcentral/fileexchange/41484
12.
Olver
,
A. V.
,
Fowell
,
M. T.
,
Spikes
,
H. A.
, and
Pegg
,
I. G.
,
2006
, “
‘Inlet Suction’, a Load Support Mechanism in Non-Convergent, Pocketed, Hydrodynamic Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
220
(
2
), pp.
105
108
.10.1243/13506501JET168
13.
Fowell
,
M.
,
Olver
,
A. V.
,
Gosman
,
A. D.
,
Spikes
,
H. A.
, and
Pegg
,
I.
,
2007
, “
Entrainment and Inlet Suction: Two Mechanisms of Hydrodynamic Lubrication in Textured Bearings
,”
J. Tribol.
,
129
(
2
), pp.
336
347
.10.1115/1.2540089
14.
Evans
,
L. C.
,
2010
,
Partial Differential Equations
,
2nd ed.
, Vol.
19 of Graduate Studies in Mathematics, American Mathematical Society
,
Providence, RI
.
You do not currently have access to this content.