Based on contact fractal theory, a modified MB fractal model, and from the energy dissipation point and considering the mechanism of energy dissipation of joint interfaces, tangential damping and its dissipation factor models of joint interfaces are proposed. Numerical simulations reveal the varying relations of tangential damping and its dissipation factor versus corresponding parameters such as fractal dimension, fractal roughness, friction factor, and plastic index. A micro convex nonlinear relation (when fractal dimension is between 1.1 and 1.4) or near linear relation(when fractal dimension is between 1.4 and 1.9) between dimensionless tangential damping and dimensionless normal contact force over the joint interfaces varies with the fractal dimension of the surface profiles, dimensionless tangential damping increases(when fractal dimension is between 1.1 and 1.7) or decreases (when fractal dimension is between 1.7 and 1.9) with the increment of fractal dimension, and decreases with the increase of dimensionless fractal roughness. While the influences of plastic index, the ratio of hardness to yield strength, and the ratio of total tangential force to total normal force on dimensionless tangential damping are similar, and a concave nonlinear relation between tangential damping dissipation factor and the normal contact force over the joint interfaces, the tangential damping dissipation factor, meanwhile, decreases with the increment of the friction factor. In addition, the validation of the tangential contact damping model is implemented in indirect ways, which make comparison between the proposed tangential stiffness model and the literature.

References

References
1.
Zhang
,
X. L.
,
2002
,
Dynamic Characteristics and Applications of Machine Joint Surfaces
,
Press of Science and Technology of China
,
Beijing
(in Chinese).
2.
Dai
,
D. P.
,
1986
,
The Damping Technology for Vibration and Noise Control
,
Xi'an Jiao Tong University Press
,
Xi'an
(in Chinese).
3.
Murty
,
A. S. R.
, and
Padmanabhan
,
K. K.
,
1982
, “
Effect of Surface Topography on Damping in Machine Joints
,”
Precis. Eng.
,
4
(
4
), pp.
185
190
.10.1016/0141-6359(82)90003-4
4.
Padmanabhan
,
K. K.
, and
Murty
,
A. S. R.
,
1991
, “
Damping in Structural Joints Subjected to Tangential Loads
,”
Proc. Inst. Mech. Eng.
,
205
, pp.
121
129
.10.1243/PIME_PROC_1991_205_099_02
5.
Padmanabhan
,
K. K.
,
1992
, “
Prediction of Damping in Machine Joints
,”
Int. J. Mach. Tools Manufact.
,
32
(
3
), pp.
305
314
.10.1016/0890-6955(92)90004-Z
6.
Zhang
,
X. L.
,
Wen
,
S. H.
,
Lan
,
G. S.
,
Ding
,
H. Q.
,
Zhang
,
Z. Y.
,
Wang
,
X. W.
, and
Liu
,
Z. H.
,
2011
, “
Fractal Model for Tangential Contact Damping of Plane Joint Interfaces With Simulation
,”
J. Xi'an Jiao Tong Univ.
,
45
(
5
), pp.
74
77
(in Chinese).
7.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
8.
Yamada
,
A.
,
Kakubari
,
T.
,
Ebata
,
H.
, and
Furukawa
,
M.
,
1983
, “
Dynamic Characteristics of Structures With Joint
,”
Trans. Jpn. Soc. Mech. Eng.
,
C49
(
438
), pp.
182
190
(in Japanese).
9.
Bograd
,
S.
,
Schmidt
,
A.
, and
Gaul
,
L.
,
2008
, “
Joint Damping Prediction by Thin Layer Elements
,”
Proceedings of the IMAC 26th Society of Experimental Mechanics Inc. Bethel
, CT.
10.
Medina
,
S.
,
Olver
,
A. V.
, and
Dini
,
D.
,
2012
, “
The Influence of Surface Topography on Energy Dissipation and Compliance in Tangentially Loaded Elastic Contacts
,”
ASME J. Tribol.
,
134
(
1
), pp.
1
12
.10.1115/1.4005641
11.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc., London, Ser. A
,
295
, pp.
300
319
.10.1098/rspa.1966.0242
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.10.1115/1.3261348
13.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elastici: Distribuzion Locale Degli Sforzi, Part I
,”
Rend., 6 Ser., Accad. Lincei, Rome
.,
27
, pp.
342
348
.
14.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elastici: Distribuzion Locale Degli Sforzi, Part II
,”
Rend., 6 Ser., Accad. Lincei, Rome.
,
27
, pp.
434
436
.
15.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elastici: Distribuzion Locale Degli Sforzi, Part III
,”
Rend., 6 Ser., Accad. Lincei, Rome.
,
27
, pp.
474
478
.
16.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
.10.7652/xjtuxb201105014
17.
Nowell
,
D.
,
Hills
,
D. A.
, and
Sackfield
,
A.
,
1988
, “
Contact of Dissimilar Elastic Cylinders Under Normal and Tangential Loading
,”
J. Mech. Phys. Solids.
,
36
(
1
), pp.
59
75
.10.1016/0022-5096(88)90020-8
18.
Björklund
,
S.
, and
Andersson
,
S.
,
1994
, “
A Numerical Method for Real Elastic Contacts Subjected to Normal and Tangential Loading
,”
Wear
,
179
, pp.
117
122
.10.1016/0043-1648(94)90228-3
19.
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2008
, “
A Numerical Model for the Point Contact of Dissimilar Materials Considering Tangential Tractions
,”
Mech. Mater.
,
40
, pp.
936
948
.10.1016/j.mechmat.2008.06.002
20.
Munisamy
,
R. L.
,
Hills
,
D. A.
, and
Nowell
,
D.
,
1992
, “
A Numerical Analysis of an Elastically Dissimilar Three-Dimensional Sliding Contact
,”
Proc. Inst. Mech. Eng.
,
206
, pp.
203
211
.10.1243/PIME_PROC_1992_206_116_02
21.
Liu
,
C. H.
,
Lin
,
Y. H.
, and
Lin
,
P. H.
,
2007
, “
A Numerical Analysis of Partial Slip Problems Under Hertzian Contacts
,”
Meccanica
,
42
, pp.
197
206
.10.1007/s11012-006-9039-1
22.
Mandelbrot
,
B. B.
,
1967
, “
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
,
156
(
3775
), pp. 636–638.
23.
Mandelbrot
,
B. B.
,
1975
, “
Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands
,”
Proc. National Academy of Sciences U.S.A
,
72
(
10
), pp. 3825–3828.
24.
Mandelbrot
,
B. B.
,
1983
,
The Fractal Geometry of Nature
,
W. H. Freeman and Company
,
New York
.
25.
Ling
,
F. F.
,
1989
, “
The Possible Role of Fractal Geometry in Tribology
,”
Tribol. Trans.
,
32
(
4
), pp. 497–505.
26.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.10.1115/1.2927338
27.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.10.1115/1.2920588
28.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. Roy. Soc., London, Ser. A
,
370
, pp. 459–484.
29.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
, pp.
824
832
.10.1115/1.2927341
30.
Tian
,
H. L.
,
Zhao
,
C. H.
,
Zhu
,
D. L.
,
Qin
,
H. L.
,
Li
,
X.
, and
Mao
,
K. M.
,
2012
, “
Modification of Normal and Tangential Stiffness for Joint Interface With Metallic Material and Experimental Validation
,”
Trans. Chin. Soc. Agric. Mach.
,
43
(
6
), pp.
207
214
(in Chinese).
31.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.10.1063/1.368536
32.
Irimescu
,
L.
,
Ciornei
,
F. C.
,
Alacistelian
,
S.
, and
Cerlinca
,
D. A.
,
2010
, “
A Model for Predicting the Micro-Slip Zone on a Fretting Contact Interface
,”
Ann. Oradea Univ., Fascicle Manage. Technol. Eng.
,
9
(
19
), pp.
1.48
1.54
. Available at: http://imtuoradea.ro/auo.fmte/files-2010-v1/MECANICA/Irimescu%20Luminita%20L1.pdf
33.
Wen
,
S. H.
,
Zhang
,
X. L.
,
Wen
,
X. G.
,
Wang
,
P. Y.
, and
Wu
,
M. X.
,
2009
, “
Fractal Model of Tangential Contact Stiffness of Joint Interfaces and Its Simulation
,”
Trans. Chin. Soc. Agric. Mach.
,
40
(
12
), pp.
223
227
(in Chinese).
34.
Yamada
,
A.
, and
Kakubari
,
T.
,
1986
, “
Prediction of Dynamic Characteristics of Beam Containing Junction
,”
J. Jpn. Soc. Precis. Eng.
,
52
(
12
), pp.
2051
2057
.10.2493/jjspe.52.2051
35.
Liou
,
J. L.
,
2006
, “
The Theoretical Study for Microcontact Model with Variable Topography Parameters
,” Ph.D. thesis, National Cheng Kung University, Taiwan.
36.
Bhushan
,
B.
,
1984
, “
Analysis of the Real Area of Contact Between a Polymeric Magnetic Medium and a Rigid Surface
,”
ASME J. Tribol.
,
106
(
1
), pp.
26
34
.10.1115/1.3260862
37.
Jang
,
S. Y.
,
Zheng
,
Y. J.
, and
Zhu
,
H.
,
2010
, “
A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,”
ASME J. Tribol.
,
132
(
1
), pp.
1
7
.10.1115/1.4000305
You do not currently have access to this content.