The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.

References

References
1.
Tonder
,
K.
,
1987
, “
Effects of Skew Unidirectional Striated Roughness on Hydrodynamic Lubrication
,”
Wear
,
115
(
1–2
), pp.
19
30
.10.1016/0043-1648(87)90194-3
2.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
,
46
(
3
), pp.
397
403
.10.1080/10402000308982643
3.
Etsion
,
I.
,
Halperin
,
G.
,
Brizmer
,
V.
, and
Kligerman
,
Y.
,
2004
, “
Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings
,”
Tribol. Lett.
,
17
(
2
), pp.
295
300
.10.1023/B:TRIL.0000032467.88800.59
4.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.10.1115/1.1828070
5.
Buscaglia
,
G. C.
,
Ciuperca
,
I.
, and
Jai
,
M.
,
2005
, “
The Effect of Periodic Textures on the Static Characteristics of Thrust Bearings
,”
ASME J. Tribol.
,
127
, pp.
899
902
.10.1115/1.2033896
6.
Ozalp
,
A. A.
, and
Umur
,
H.
,
2006
, “
Optimum Surface Profile Design and Performance Evaluation of Inclined Slider Bearings
,”
Current Sci.
,
90
(
11
), pp.
1480
1491
.
7.
Marian
,
V. G.
,
Kilian
,
M.
, and
Scholz
,
W.
,
2007
, “
Theoretical and Experimental Analysis of Partially Textured Thrust Bearing With Square Dimples
,”
Proc. Inst. Mech. Eng. Part J
,
221
, pp.
771
778
.10.1243/13506501JET292
8.
Pascovici
,
M. D.
,
Cicone
,
T.
,
Fillon
,
M.
, and
Dobrica
,
M. B.
,
2009
, “
Analytical Investigation of a Partially Textured Parallel Slider
,”
Proc. Inst. Mech. Eng. Part J
,
223
(
2
), pp.
151
158
.10.1243/13506501JET470
9.
Marian
,
V. G.
,
Gabriel
,
D.
,
Knoll
,
G.
, and
Filippone
,
S.
,
2011
, “
Theoretical and Experimental Analysis of a Laser Textured Thrust Bearing
,”
Tribol. Lett.
,
44
, pp.
335
343
.10.1007/s11249-011-9857-8
10.
Dobrica
,
M. B.
, and
Fillon
,
M.
,
2009
, “
About the Validity of Reynolds Equation and Inertia Effects in Textured Sliders of Infinite Width
,”
Proc. Inst. Mech. Eng. Part J
,
223
(
1
), pp.
69
78
.
11.
Arghir
,
M.
,
Roucou
,
N.
,
Helene
,
M.
, and
Frene
,
J.
,
2003
, “
Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell
,”
ASME J. Tribol.
,
125
(
2
), pp.
309
318
.10.1115/1.1506328
12.
Brajdic-Mitidieri
,
P.
,
Gosman
,
A. D.
,
Ioannides
,
E.
, and
Spikes
,
H. A.
,
2005
, “
CFD Analysis of a Low Friction Pocketed Pad Bearing
,”
ASME J. Tribol.
,
127
(
4
), pp.
803
812
.10.1115/1.2032990
13.
Cupillard
,
S.
,
Cervantes
,
M. J.
, and
Glavatskih
,
S.
,
2008
, “
Pressure Buildup Mechanism in a Textured Inlet of a Hydrodynamic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
021701
.10.1115/1.2805426
14.
Han
,
J.
,
Fang
,
L.
,
Sun
,
J.
, and
Ge
,
S.
,
2010
, “
Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD
,”
Tribol. Trans.
,
53
, pp.
860
870
.10.1080/10402004.2010.496070
15.
Van Ostayen
,
R. A. J.
,
Van Beek
,
A.
, and
Munnig-Schmidt
,
R. H.
,
2007
, “
Film Height Optimization of Hydrodynamic Slider Bearings
,”
Proceedings of the ASME/STLE International Joint Tribology Conference
, IJTC 2007 Part A, pp.
237
239
.
16.
Buscaglia
,
G. C.
,
Ausas
,
R. F.
, and
Jai
,
M.
,
2006
, “
Optimization Tools in the Analysis of Micro-Textured Lubricated Devices
,”
Inverse Problems Sci. Eng.
,
14
(
4
), pp.
365
378
.10.1080/17415970600573452
17.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
,
2010
, “
Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach
,”
Proc. Inst. Mech. Eng. Part J
,
224
(
8
), pp.
737
750
.
18.
Papadopoulos
,
C. I.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2011
, “
Evolutionary Optimization of Micro- Thrust Bearings With Periodic Partial Trapezoidal Surface Texturing
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
012301
.10.1115/1.4001990
19.
Papadopoulos
,
C. I.
,
Efstathiou
,
E. E.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2011
, “
Geometry Optimization of Textured Three-Dimensional Micro- Thrust Bearings
,”
ASME J. Tribol.
,
133
(
4
), p.
041702
.10.1115/1.4004990
20.
Dadouche
,
A.
,
Fillon
,
M.
, and
Bligoud
,
J. C.
,
2000
, “
Experiments on Thermal Effects in a Hydrodynamic Thrust Bearing
,”
Tribol. Int.
,
33
, pp.
167
174
.10.1016/S0301-679X(00)00023-2
21.
Dadouche
,
A.
,
Fillon
,
M.
, and
Dmochowski
,
W.
,
2006
, “
Performance of a Hydrodynamic Fixed Geometry Thrust Bearing: Comparison Between Experimental Data and Numerical Results
,”
Tribol. Trans.
,
49
, pp.
419
426
.10.1080/10402000600781457
22.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M. J.
,
2009
, “
3D Thermohydrodynamic Analysis of a Textured Slider
,”
Tribol. Int.
,
42
, pp.
1487
1495
.10.1016/j.triboint.2009.05.021
23.
Frene
,
J.
,
Nicolas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
,
1997
,
Hydrodynamic Lubrication: Bearings and Thrust Bearings
,
Elsevier
,
Amsterdam
.
24.
Boncompain
,
R.
, and
Frêne
,
J.
,
1980
, “
Thermohydrodynamic Analysis of a Finite Journal Bearing Static and Dynamic Characteristic
,”
Proceedings of the Sixth Leeds–Lyon Symposium on Thermal Effects in Tribology, Professional Engineering Publication Ltd
,
London
, pp.
33
41
.
25.
Ahmed
,
S. A.
,
Fillon
,
M.
, and
Maspeyrot
P.
,
2010
, “
Influence of Pad and Runner Mechanical Deformations on the Performance of a Hydrodynamic Fixed Geometry Thrust Bearing
,”
J. Eng. Tribol.
,
224
(
4
), pp.
305
315
.10.1243/13506501JET651
26.
Angantyr
,
A.
, and
Aidanpaa
,
J. O.
,
2006
, “
Constrained Optimization of Gas Turbine Tilting Pad Bearing Designs
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
873
878
.10.1115/1.2179463
27.
Untaroiu
,
C. D.
, and
Untaroiu
A.
,
2010
, “
Constrained Design Optimization of Rotor-Tilting Pad Bearings Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), pp.
1
7
.10.1115/1.4001811
You do not currently have access to this content.