This paper presents a novel method to compute the lubricant pressure distribution between a rough and a smooth surface in relative motion. The originality of this method is to combine a deterministic approach for the large scales and a stochastic model for the small scales of the problem. As a result, the new method allows a significant mesh reduction while maintaining an accurate prediction of the generated load.

References

References
1.
Lebeck
,
A.
,
1987
, “
Parallel Sliding Load Support in the Mixed Friction Regime—Part 1: The Experimental Data
,”
ASME J. Tribol.
,
109
(
1
), pp.
189
195
.10.1115/1.3261317
2.
Lebeck
,
A.
,
1987
, “
Parallel Sliding Load Support in the Mixed Friction Regime—Part 2: Evaluations of the Mechanisms
,”
ASME J. Tribol.
,
109
(
1
), pp.
196
205
.10.1115/1.3261319
3.
Minet
,
C.
,
Brunetière
,
N.
, and
Tournerie
,
B.
,
2011
, “
A Deterministic Mixed Lubrication Model for Mechanical Seals
,”
ASME J. Tribol.
,
133
(
4
), p.
042203
.10.1115/1.4005068
4.
Patir
,
N.
and
Cheng
,
H.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.10.1115/1.3453103
5.
Elrod
,
H.
,
1979
, “
A General Theory for Laminar Lubrication With Reynolds Roughness
,”
ASME J. Lubr. Technol.
,
101
(
1
), pp.
8
14
.10.1115/1.3453283
6.
Patir
,
N.
, and
Cheng
,
H.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
230
.10.1115/1.3453329
7.
Tripp
,
J.
,
1983
, “
Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
458
465
.10.1115/1.3254641
8.
Bayada
,
G.
, and
Faure
,
J.
,
1989
, “
A Double Scale Analysis Approach of the Reynolds Roughness Comments and Application to the Journal Bearing
,”
ASME J. Tribol.
,
111
(
2
), pp.
323
330
.10.1115/1.3261917
9.
Kane
,
M.
, and
Bou-Saïd
,
B.
,
2004
, “
Comparison of Homogenization and Direct Techniques for the Treatment of Roughness in Incompressible Lubrication
,”
ASME J. Tribol.
,
126
(
4
), pp.
733
737
.10.1115/1.1792699
10.
Lubrecht
,
A.
,
Ten Napel
,
W.
, and
Bosma
,
R.
,
1988
, “
Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
,
110
(
3
), pp.
421
426
.10.1115/1.3261645
11.
Hu
,
Y.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.10.1115/1.555322
12.
Wang
,
Q.
,
Zhu
,
D.
,
Cheng
,
H.
,
Yu
,
T.
,
Jiang
,
X.
, and
Liu
,
S.
,
2004
, “
Mixed Lubrication Analyses by a Macro-Micro Approach and a Full-Scale Mixed EHL Model
,”
ASME J. Tribol.
,
126
(
1
), p.
2004
.
13.
Nyemeck
,
A.
,
Brunetière
,
N.
, and
Tournerie
,
B.
,
2012
, “
A Multiscale Approach to the Mixed Lubrication Regime: Application to Mechanical Seals
,”
Tribol. Lett.
,
47
(
3
), pp.
417
429
.10.1007/s11249-012-9997-5
14.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows—An Introduction
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
15.
Ao
,
Y.
,
Wang
,
Q.
, and
Chen
,
P.
,
2002
, “
Simulating the Worn Surface in a Wear Process
,”
Wear
,
252
, pp.
37
47
.10.1016/S0043-1648(01)00841-9
16.
Minet
,
C.
,
Brunetière
,
N.
,
Tournerie
,
B.
, and
Fribourg
,
D.
,
2010
, “
Analysis and Modelling of the Topography of Mechanical Seal Faces
,”
Tribol. Trans.
,
53
(
6
), pp.
799
815
.10.1080/10402004.2010.487294
17.
Bhushan
,
B.
,
2001
, “
Surface Roughness Analysis and Measurement Techniques
,”
Modern Tribology Handbook
,
CRC
,
Boca Raton
, pp.
1
71
.
18.
Hu
,
Y.
, and
Tonder
,
K.
,
1992
, “
Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
,
32
(
1/2
), pp.
83
90
.10.1016/0890-6955(92)90064-N
19.
Mack
,
C.
,
2011
, “
Analytic Form for the Power Spectral Density in One, Two and Three Dimensions
,”
J. Micro/Nanolith. MEMS MOEMS
,
10
(
4
), p.
04501
.
You do not currently have access to this content.